Author: Anne M. Collins, Ph.D.
Publisher: Teacher Created Materials
ISBN: 1480786799
Category :
Languages : en
Pages : 5
Book Description
Differentiate problem solving in your classroom using effective, research-based strategies. This lesson focuses on solving problems related to coordinate planes. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.
Operations and Algebraic Thinking Leveled Problems: Coordinate Planes
Author: Anne M. Collins, Ph.D.
Publisher: Teacher Created Materials
ISBN: 1480786799
Category :
Languages : en
Pages : 5
Book Description
Differentiate problem solving in your classroom using effective, research-based strategies. This lesson focuses on solving problems related to coordinate planes. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.
Publisher: Teacher Created Materials
ISBN: 1480786799
Category :
Languages : en
Pages : 5
Book Description
Differentiate problem solving in your classroom using effective, research-based strategies. This lesson focuses on solving problems related to coordinate planes. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.
Operations and Algebraic Thinking Leveled Problems: X and Y Values
Author: Anne M. Collins, Ph.D.
Publisher: Teacher Created Materials
ISBN: 1480786802
Category :
Languages : en
Pages : 5
Book Description
Differentiate problem solving in your classroom using effective, research-based strategies. This lesson focuses on solving problems related to x and y values. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.
Publisher: Teacher Created Materials
ISBN: 1480786802
Category :
Languages : en
Pages : 5
Book Description
Differentiate problem solving in your classroom using effective, research-based strategies. This lesson focuses on solving problems related to x and y values. The problem-solving mini-lesson guides teachers in how to teach differentiated lessons. The student activity sheet features a problem tiered at three levels.
50 Leveled Math Problems Level 5
Author: Anne Collins
Publisher: Teacher Created Materials
ISBN: 9781425807771
Category : Education
Languages : en
Pages : 148
Book Description
It includes: 50 leveled math problems (150 problems total), an overview of the problem-solving process, and ideas for formative assessment of students' problem-solving abilities. It also includes 50 mini-lessons and a dstudent activity sheet featuring a problem tiered at three levels, plus digital resources that inc electronic versions of activity sheets. This resource is aligned to the interdisciplinary themes from the Partnership for 21st Century Skills, and supports core concepts of STEM instruction.
Publisher: Teacher Created Materials
ISBN: 9781425807771
Category : Education
Languages : en
Pages : 148
Book Description
It includes: 50 leveled math problems (150 problems total), an overview of the problem-solving process, and ideas for formative assessment of students' problem-solving abilities. It also includes 50 mini-lessons and a dstudent activity sheet featuring a problem tiered at three levels, plus digital resources that inc electronic versions of activity sheets. This resource is aligned to the interdisciplinary themes from the Partnership for 21st Century Skills, and supports core concepts of STEM instruction.
50 Leveled Math Problems Level 6
Author: Anne Collins
Publisher: Teacher Created Materials
ISBN: 9781425807788
Category : Education
Languages : en
Pages : 150
Book Description
It includes: 50 leveled math problems (150 problems total), an overview of the problem-solving process, and ideas for formative assessment of students' problem-solving abilities. It also includes 50 mini-lessons and a dstudent activity sheet featuring a problem tiered at three levels, plus digital resources that inc electronic versions of activity sheets. This resource is aligned to the interdisciplinary themes from the Partnership for 21st Century Skills, and supports core concepts of STEM instruction.
Publisher: Teacher Created Materials
ISBN: 9781425807788
Category : Education
Languages : en
Pages : 150
Book Description
It includes: 50 leveled math problems (150 problems total), an overview of the problem-solving process, and ideas for formative assessment of students' problem-solving abilities. It also includes 50 mini-lessons and a dstudent activity sheet featuring a problem tiered at three levels, plus digital resources that inc electronic versions of activity sheets. This resource is aligned to the interdisciplinary themes from the Partnership for 21st Century Skills, and supports core concepts of STEM instruction.
Approaches to Algebra
Author: N. Bednarz
Publisher: Springer Science & Business Media
ISBN: 9400917325
Category : Education
Languages : en
Pages : 342
Book Description
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.
Publisher: Springer Science & Business Media
ISBN: 9400917325
Category : Education
Languages : en
Pages : 342
Book Description
In Greek geometry, there is an arithmetic of magnitudes in which, in terms of numbers, only integers are involved. This theory of measure is limited to exact measure. Operations on magnitudes cannot be actually numerically calculated, except if those magnitudes are exactly measured by a certain unit. The theory of proportions does not have access to such operations. It cannot be seen as an "arithmetic" of ratios. Even if Euclidean geometry is done in a highly theoretical context, its axioms are essentially semantic. This is contrary to Mahoney's second characteristic. This cannot be said of the theory of proportions, which is less semantic. Only synthetic proofs are considered rigorous in Greek geometry. Arithmetic reasoning is also synthetic, going from the known to the unknown. Finally, analysis is an approach to geometrical problems that has some algebraic characteristics and involves a method for solving problems that is different from the arithmetical approach. 3. GEOMETRIC PROOFS OF ALGEBRAIC RULES Until the second half of the 19th century, Euclid's Elements was considered a model of a mathematical theory. This may be one reason why geometry was used by algebraists as a tool to demonstrate the accuracy of rules otherwise given as numerical algorithms. It may also be that geometry was one way to represent general reasoning without involving specific magnitudes. To go a bit deeper into this, here are three geometric proofs of algebraic rules, the frrst by Al-Khwarizmi, the other two by Cardano.
Concept-Based Mathematics
Author: Jennifer T.H. Wathall
Publisher: Corwin Press
ISBN: 150633265X
Category : Education
Languages : en
Pages : 307
Book Description
Give math students the connections between what they learn and how they do math—and suddenly math makes sense If your secondary-school students are fearful of or frustrated by math, it’s time for a new approach. When you teach concepts rather than rote processes, you show students math’s essential elegance, as well as its practicality—and help them discover their own natural mathematical abilities. This book is a road map to retooling how you teach math in a deep, clear, and meaningful way —through a conceptual lens—helping students achieve higher-order thinking skills. Jennifer Wathall shows you how to plan units, engage students, assess understanding, incorporate technology, and even guides you through an ideal concept-based classroom. Practical tools include: Examples from arithmetic to calculus Inquiry tasks, unit planners, templates, and activities Sample assessments with examples of student work Vignettes from international educators A dedicated companion website with additional resources, including a study guide, templates, exemplars, discussion questions, and other professional development activities. Everyone has the power to understand math. By extending Erickson and Lanning’s work on Concept-Based Curriculum and Instruction specifically to math, this book helps students achieve the deep understanding and skills called for by global standards and be prepared for the 21st century workplace. "Jennifer Wathall’s book is one of the most forward thinking mathematics resources on the market. While highlighting the essential tenets of Concept-Based Curriculum design, her accessible explanations and clear examples show how to move students to deeper conceptual understandings. This book ignites the mathematical mind!" — Lois A. Lanning, Author of Designing Concept-based Curriculum for English-Language Arts, K-12 "Wathall is a master at covering all the bases here; this book is bursting with engaging assessment examples, discussion questions, research, and resources that apply specifically to mathematical topics. Any math teacher or coach would be hard-pressed to read it and not come away with scores of ideas, assessments, and lessons that she could use instantly in the classroom. As an IB Workshop Leader and instructional coach, I want this book handy on a nearby shelf for regular referral – it′s a boon to any educator who wants to bring math to life for students." — Alexis Wiggins, Instructional Coach, IB Workshop Leader and Consultant
Publisher: Corwin Press
ISBN: 150633265X
Category : Education
Languages : en
Pages : 307
Book Description
Give math students the connections between what they learn and how they do math—and suddenly math makes sense If your secondary-school students are fearful of or frustrated by math, it’s time for a new approach. When you teach concepts rather than rote processes, you show students math’s essential elegance, as well as its practicality—and help them discover their own natural mathematical abilities. This book is a road map to retooling how you teach math in a deep, clear, and meaningful way —through a conceptual lens—helping students achieve higher-order thinking skills. Jennifer Wathall shows you how to plan units, engage students, assess understanding, incorporate technology, and even guides you through an ideal concept-based classroom. Practical tools include: Examples from arithmetic to calculus Inquiry tasks, unit planners, templates, and activities Sample assessments with examples of student work Vignettes from international educators A dedicated companion website with additional resources, including a study guide, templates, exemplars, discussion questions, and other professional development activities. Everyone has the power to understand math. By extending Erickson and Lanning’s work on Concept-Based Curriculum and Instruction specifically to math, this book helps students achieve the deep understanding and skills called for by global standards and be prepared for the 21st century workplace. "Jennifer Wathall’s book is one of the most forward thinking mathematics resources on the market. While highlighting the essential tenets of Concept-Based Curriculum design, her accessible explanations and clear examples show how to move students to deeper conceptual understandings. This book ignites the mathematical mind!" — Lois A. Lanning, Author of Designing Concept-based Curriculum for English-Language Arts, K-12 "Wathall is a master at covering all the bases here; this book is bursting with engaging assessment examples, discussion questions, research, and resources that apply specifically to mathematical topics. Any math teacher or coach would be hard-pressed to read it and not come away with scores of ideas, assessments, and lessons that she could use instantly in the classroom. As an IB Workshop Leader and instructional coach, I want this book handy on a nearby shelf for regular referral – it′s a boon to any educator who wants to bring math to life for students." — Alexis Wiggins, Instructional Coach, IB Workshop Leader and Consultant
Creative Problem Solving in School Mathematics
Author: George Lenchner
Publisher:
ISBN: 9780975731611
Category : Australian Primary Schools Mathematical Olympiad
Languages : en
Pages : 281
Book Description
Publisher:
ISBN: 9780975731611
Category : Australian Primary Schools Mathematical Olympiad
Languages : en
Pages : 281
Book Description
College Algebra
Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892
Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
The Mathematics of Chip-Firing
Author: Caroline J. Klivans
Publisher: CRC Press
ISBN: 135180099X
Category : Computers
Languages : en
Pages : 308
Book Description
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.
Publisher: CRC Press
ISBN: 135180099X
Category : Computers
Languages : en
Pages : 308
Book Description
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.
Pearl Harbor Attack: Hearings, Nov. 15, 1945-May 31, 1946
Author: United States. Congress. Joint Committee on the Investigation of the Pearl Harbor Attack
Publisher:
ISBN:
Category : Pearl Harbor (Hawaii), Attack on, 1941
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Pearl Harbor (Hawaii), Attack on, 1941
Languages : en
Pages :
Book Description