Author: Wilfred Kaplan
Publisher:
ISBN:
Category : Calculus, Operational
Languages : en
Pages : 602
Book Description
Operational Methods for Linear Systems
Author: Wilfred Kaplan
Publisher:
ISBN:
Category : Calculus, Operational
Languages : en
Pages : 602
Book Description
Publisher:
ISBN:
Category : Calculus, Operational
Languages : en
Pages : 602
Book Description
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Direct Methods for Sparse Linear Systems
Author: Timothy A. Davis
Publisher: SIAM
ISBN: 0898716136
Category : Computers
Languages : en
Pages : 228
Book Description
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.
Publisher: SIAM
ISBN: 0898716136
Category : Computers
Languages : en
Pages : 228
Book Description
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.
Templates for the Solution of Linear Systems
Author: Richard Barrett
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Publisher: SIAM
ISBN: 9781611971538
Category : Mathematics
Languages : en
Pages : 141
Book Description
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.
Mathematics for Operations Research
Author: W. H. Marlow
Publisher: Courier Corporation
ISBN: 0486677230
Category : Mathematics
Languages : en
Pages : 514
Book Description
Practical and applications-oriented, this text explains effective procedures for performing mathematical tasks that arise in many fields, including operations research, engineering, systems sciences, statistics, and economics. Most of the examples and many of the 1,300 problems illustrate techniques, and nearly all of the tables display reference material for procedures. 1978 edition.
Publisher: Courier Corporation
ISBN: 0486677230
Category : Mathematics
Languages : en
Pages : 514
Book Description
Practical and applications-oriented, this text explains effective procedures for performing mathematical tasks that arise in many fields, including operations research, engineering, systems sciences, statistics, and economics. Most of the examples and many of the 1,300 problems illustrate techniques, and nearly all of the tables display reference material for procedures. 1978 edition.
Stability Techniques for Continuous Linear Systems
Author: Allan M. Krall
Publisher: CRC Press
ISBN: 9780677014203
Category : Mathematics
Languages : en
Pages : 180
Book Description
Publisher: CRC Press
ISBN: 9780677014203
Category : Mathematics
Languages : en
Pages : 180
Book Description
Numerical Linear Algebra
Author: Holger Wendland
Publisher: Cambridge University Press
ISBN: 1108548636
Category : Computers
Languages : en
Pages : 420
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Publisher: Cambridge University Press
ISBN: 1108548636
Category : Computers
Languages : en
Pages : 420
Book Description
This self-contained introduction to numerical linear algebra provides a comprehensive, yet concise, overview of the subject. It includes standard material such as direct methods for solving linear systems and least-squares problems, error, stability and conditioning, basic iterative methods and the calculation of eigenvalues. Later chapters cover more advanced material, such as Krylov subspace methods, multigrid methods, domain decomposition methods, multipole expansions, hierarchical matrices and compressed sensing. The book provides rigorous mathematical proofs throughout, and gives algorithms in general-purpose language-independent form. Requiring only a solid knowledge in linear algebra and basic analysis, this book will be useful for applied mathematicians, engineers, computer scientists, and all those interested in efficiently solving linear problems.
Solving Linear Systems
Author: Zbigniew Ignacy Woźnicki
Publisher:
ISBN: 9780971576667
Category : Differential equations, Linear
Languages : en
Pages : 554
Book Description
Publisher:
ISBN: 9780971576667
Category : Differential equations, Linear
Languages : en
Pages : 554
Book Description
Matrix Operations for Engineers and Scientists
Author: Alan Jeffrey
Publisher: Springer Science & Business Media
ISBN: 9048192749
Category : Science
Languages : en
Pages : 323
Book Description
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.
Publisher: Springer Science & Business Media
ISBN: 9048192749
Category : Science
Languages : en
Pages : 323
Book Description
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.
Theory of Linear Operations
Author: S. Banach
Publisher: Elsevier
ISBN: 0080887201
Category : Computers
Languages : en
Pages : 249
Book Description
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'') complements this important monograph.
Publisher: Elsevier
ISBN: 0080887201
Category : Computers
Languages : en
Pages : 249
Book Description
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'') complements this important monograph.