Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799827704
Category : Computers
Languages : en
Pages : 237
Book Description
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.
Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities
Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799827704
Category : Computers
Languages : en
Pages : 237
Book Description
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.
Publisher: IGI Global
ISBN: 1799827704
Category : Computers
Languages : en
Pages : 237
Book Description
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.
Open Source Software for Statistical Analysis of Big Data
Author: Richard Segall
Publisher: Engineering Science Reference
ISBN: 9781799827696
Category : Big data
Languages : en
Pages :
Book Description
"This book explores topics in the field of open source software for big data"--
Publisher: Engineering Science Reference
ISBN: 9781799827696
Category : Big data
Languages : en
Pages :
Book Description
"This book explores topics in the field of open source software for big data"--
MatConvNet Deep Learning and iOS Mobile App Design for Pattern Recognition: Emerging Research and Opportunities
Author: Wu, Jiann-Ming
Publisher: IGI Global
ISBN: 1799815560
Category : Computers
Languages : en
Pages : 181
Book Description
Deep learning has become a trending area of research due to its adaptive characteristics and high levels of applicability. In recent years, researchers have begun applying deep learning strategies to image analysis and pattern recognition for solving technical issues within image classification. As these technologies continue to advance, professionals have begun translating this intelligent programming language into mobile applications for devices. Programmers and web developers are in need of significant research on how to successfully develop pattern recognition applications using intelligent programming. MatConvNet Deep Learning and iOS Mobile App Design for Pattern Recognition: Emerging Research and Opportunities is an essential reference source that presents a solution to developing intelligent pattern recognition Apps on iOS devices based on MatConvNet deep learning. Featuring research on topics such as medical image diagnosis, convolutional neural networks, and character classification, this book is ideally designed for programmers, developers, researchers, practitioners, engineers, academicians, students, scientists, and educators seeking coverage on the specific development of iOS mobile applications using pattern recognition strategies.
Publisher: IGI Global
ISBN: 1799815560
Category : Computers
Languages : en
Pages : 181
Book Description
Deep learning has become a trending area of research due to its adaptive characteristics and high levels of applicability. In recent years, researchers have begun applying deep learning strategies to image analysis and pattern recognition for solving technical issues within image classification. As these technologies continue to advance, professionals have begun translating this intelligent programming language into mobile applications for devices. Programmers and web developers are in need of significant research on how to successfully develop pattern recognition applications using intelligent programming. MatConvNet Deep Learning and iOS Mobile App Design for Pattern Recognition: Emerging Research and Opportunities is an essential reference source that presents a solution to developing intelligent pattern recognition Apps on iOS devices based on MatConvNet deep learning. Featuring research on topics such as medical image diagnosis, convolutional neural networks, and character classification, this book is ideally designed for programmers, developers, researchers, practitioners, engineers, academicians, students, scientists, and educators seeking coverage on the specific development of iOS mobile applications using pattern recognition strategies.
Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning
Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799884570
Category : Computers
Languages : en
Pages : 394
Book Description
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
Publisher: IGI Global
ISBN: 1799884570
Category : Computers
Languages : en
Pages : 394
Book Description
During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
Machine Learning and Deep Learning in Real-Time Applications
Author: Mahrishi, Mehul
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Publisher: IGI Global
ISBN: 1799830977
Category : Computers
Languages : en
Pages : 344
Book Description
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Industrial Internet of Things and Cyber-Physical Systems: Transforming the Conventional to Digital
Author: Kumar, Pardeep
Publisher: IGI Global
ISBN: 1799828050
Category : Computers
Languages : en
Pages : 431
Book Description
With the help of artificial intelligence, machine learning, and big data analytics, the internet of things (IoT) is creating partnerships within industry where machines, processes, and humans communicate with one another. As this radically changes traditional industrial operations, this results in the rapid design, cheap manufacture, and effective customization of products. Answering the growing demand of customers and their preferences has become a challenge for such partnerships. Industrial Internet of Things and Cyber-Physical Systems: Transforming the Conventional to Digital is a collection of innovative research that discusses development, implementation, and business impacts of IoT technologies on sustainable societal development and improved life quality. Highlighting a wide range of topics such as green technologies, wireless networks, and IoT policy, this book is ideally designed for technology developers, entrepreneurs, industrialists, programmers, engineers, technicians, researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1799828050
Category : Computers
Languages : en
Pages : 431
Book Description
With the help of artificial intelligence, machine learning, and big data analytics, the internet of things (IoT) is creating partnerships within industry where machines, processes, and humans communicate with one another. As this radically changes traditional industrial operations, this results in the rapid design, cheap manufacture, and effective customization of products. Answering the growing demand of customers and their preferences has become a challenge for such partnerships. Industrial Internet of Things and Cyber-Physical Systems: Transforming the Conventional to Digital is a collection of innovative research that discusses development, implementation, and business impacts of IoT technologies on sustainable societal development and improved life quality. Highlighting a wide range of topics such as green technologies, wireless networks, and IoT policy, this book is ideally designed for technology developers, entrepreneurs, industrialists, programmers, engineers, technicians, researchers, academicians, and students.
Data Analysis with Open Source Tools
Author: Philipp K. Janert
Publisher: "O'Reilly Media, Inc."
ISBN: 1449396658
Category : Computers
Languages : en
Pages : 534
Book Description
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora
Publisher: "O'Reilly Media, Inc."
ISBN: 1449396658
Category : Computers
Languages : en
Pages : 534
Book Description
Collecting data is relatively easy, but turning raw information into something useful requires that you know how to extract precisely what you need. With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications. Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you. Use graphics to describe data with one, two, or dozens of variables Develop conceptual models using back-of-the-envelope calculations, as well asscaling and probability arguments Mine data with computationally intensive methods such as simulation and clustering Make your conclusions understandable through reports, dashboards, and other metrics programs Understand financial calculations, including the time-value of money Use dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situations Become familiar with different open source programming environments for data analysis "Finally, a concise reference for understanding how to conquer piles of data."--Austin King, Senior Web Developer, Mozilla "An indispensable text for aspiring data scientists."--Michael E. Driscoll, CEO/Founder, Dataspora
Advanced Applications of Fractional Differential Operators to Science and Technology
Author: Matouk, Ahmed Ezzat
Publisher: IGI Global
ISBN: 1799831248
Category : Mathematics
Languages : en
Pages : 401
Book Description
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
Publisher: IGI Global
ISBN: 1799831248
Category : Mathematics
Languages : en
Pages : 401
Book Description
Fractional-order calculus dates to the 19th century but has been resurrected as a prevalent research subject due to its provision of more adequate and realistic descriptions of physical aspects within the science and engineering fields. What was once a classical form of mathematics is currently being reintroduced as a new modeling technique that engineers and scientists are finding modern uses for. There is a need for research on all facets of these fractional-order systems and studies of its potential applications. Advanced Applications of Fractional Differential Operators to Science and Technology provides emerging research exploring the theoretical and practical aspects of novel fractional modeling and related dynamical behaviors as well as its applications within the fields of physical sciences and engineering. Featuring coverage on a broad range of topics such as chaotic dynamics, ecological models, and bifurcation control, this book is ideally designed for engineering professionals, mathematicians, physicists, analysts, researchers, educators, and students seeking current research on fractional calculus and other applied mathematical modeling techniques.
Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants
Author: Bin Liang
Publisher: Elsevier
ISBN: 0443141711
Category : Science
Languages : en
Pages : 671
Book Description
Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants contains the latest information on big data-driven risk detection and analysis, risk assessment and environmental health effect, intelligent risk control technologies, and global control strategy of emerging contaminants. First, this book highlights advances and challenges throughout the detection of emerging chemical contaminants (e.g., antimicrobials, microplastics) by sensors or mass spectrometry, as well as emerging biological contaminant (e.g., ARGs, pathogens) by a combination of next- and third-generation sequencing technologies in aquatic environment. Second, it discusses in depth the ecological risk assessment and environmental health effects of emerging contaminants. Lastly, it presents the most up-to-date intelligent risk management technologies. This book shares instrumental global strategy and policy analysis on how to control emerging contaminants. Offering interdisciplinary and global perspectives from experts in environmental sciences and engineering, environmental microbiology and microbiome, environmental informatics and bioinformatics, intelligent systems, and knowledge engineering, this book provides an accessible and flexible resource for researchers and upper level students working in these fields. - Covers the detection, high-throughput analyses, and environmental behavior of the typical emerging chemical and biological contaminants - Focuses on chemical and biological big data driven aquatic ecological risk assessment models and techniques - Highlights the intelligent management and control technologies and policies for emerging contaminants in water environments
Publisher: Elsevier
ISBN: 0443141711
Category : Science
Languages : en
Pages : 671
Book Description
Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants contains the latest information on big data-driven risk detection and analysis, risk assessment and environmental health effect, intelligent risk control technologies, and global control strategy of emerging contaminants. First, this book highlights advances and challenges throughout the detection of emerging chemical contaminants (e.g., antimicrobials, microplastics) by sensors or mass spectrometry, as well as emerging biological contaminant (e.g., ARGs, pathogens) by a combination of next- and third-generation sequencing technologies in aquatic environment. Second, it discusses in depth the ecological risk assessment and environmental health effects of emerging contaminants. Lastly, it presents the most up-to-date intelligent risk management technologies. This book shares instrumental global strategy and policy analysis on how to control emerging contaminants. Offering interdisciplinary and global perspectives from experts in environmental sciences and engineering, environmental microbiology and microbiome, environmental informatics and bioinformatics, intelligent systems, and knowledge engineering, this book provides an accessible and flexible resource for researchers and upper level students working in these fields. - Covers the detection, high-throughput analyses, and environmental behavior of the typical emerging chemical and biological contaminants - Focuses on chemical and biological big data driven aquatic ecological risk assessment models and techniques - Highlights the intelligent management and control technologies and policies for emerging contaminants in water environments
Big Data of Complex Networks
Author: Matthias Dehmer
Publisher: CRC Press
ISBN: 1315353598
Category : Computers
Languages : en
Pages : 290
Book Description
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.
Publisher: CRC Press
ISBN: 1315353598
Category : Computers
Languages : en
Pages : 290
Book Description
Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.