Author: Alessandro Audrito
Publisher: American Mathematical Society
ISBN: 1470471353
Category : Mathematics
Languages : en
Pages : 130
Book Description
View the abstract.
On the Nodal Set of Solutions to a Class of Nonlocal Parabolic Equations
Author: Alessandro Audrito
Publisher: American Mathematical Society
ISBN: 1470471353
Category : Mathematics
Languages : en
Pages : 130
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470471353
Category : Mathematics
Languages : en
Pages : 130
Book Description
View the abstract.
Advances in Harmonic Analysis and Partial Differential Equations
Author: Donatella Danielli
Publisher: American Mathematical Soc.
ISBN: 1470448963
Category : Education
Languages : en
Pages : 212
Book Description
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Partial Differential Equations, held from April 21–22, 2018, at Northeastern University, Boston, Massachusetts. The book features a series of recent developments at the interface between harmonic analysis and partial differential equations and is aimed toward the theoretical and applied communities of researchers working in real, complex, and harmonic analysis, partial differential equations, and their applications. The topics covered belong to the general areas of the theory of function spaces, partial differential equations of elliptic, parabolic, and dissipative types, geometric optics, free boundary problems, and ergodic theory, and the emphasis is on a host of new concepts, methods, and results.
Publisher: American Mathematical Soc.
ISBN: 1470448963
Category : Education
Languages : en
Pages : 212
Book Description
This volume contains the proceedings of the AMS Special Session on Harmonic Analysis and Partial Differential Equations, held from April 21–22, 2018, at Northeastern University, Boston, Massachusetts. The book features a series of recent developments at the interface between harmonic analysis and partial differential equations and is aimed toward the theoretical and applied communities of researchers working in real, complex, and harmonic analysis, partial differential equations, and their applications. The topics covered belong to the general areas of the theory of function spaces, partial differential equations of elliptic, parabolic, and dissipative types, geometric optics, free boundary problems, and ergodic theory, and the emphasis is on a host of new concepts, methods, and results.
Mathematical Reviews
Nonlocal Elliptic and Parabolic Problems
Author: Piotr Biler
Publisher:
ISBN:
Category : Differential equations, Elliiptics
Languages : en
Pages : 362
Book Description
Publisher:
ISBN:
Category : Differential equations, Elliiptics
Languages : en
Pages : 362
Book Description
The Fractional Laplacian
Author: Wenxiong Chen
Publisher: World Scientific
ISBN: 9813224010
Category : Mathematics
Languages : en
Pages : 342
Book Description
This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence.
Publisher: World Scientific
ISBN: 9813224010
Category : Mathematics
Languages : en
Pages : 342
Book Description
This is a unique book that provides a comprehensive understanding of nonlinear equations involving the fractional Laplacian as well as other nonlocal operators. Beginning from the definition of fractional Laplacian, it gradually leads the readers to the frontier of current research in this area. The explanations and illustrations are elementary enough so that first year graduate students can follow easily, while it is advanced enough to include many new ideas, methods, and results that appeared recently in research literature, which researchers would find helpful. It focuses on introducing direct methods on the nonlocal problems without going through extensions, such as the direct methods of moving planes, direct method of moving spheres, direct blowing up and rescaling arguments, and so on. Different from most other books, it emphasizes on illuminating the ideas behind the formal concepts and proofs, so that readers can quickly grasp the essence.
Advances in Differential Equations
Author:
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 380
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 380
Book Description
Galerkin Finite Element Methods for Parabolic Problems
Author: Vidar Thomee
Publisher: Springer Science & Business Media
ISBN: 3662033593
Category : Mathematics
Languages : en
Pages : 310
Book Description
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Publisher: Springer Science & Business Media
ISBN: 3662033593
Category : Mathematics
Languages : en
Pages : 310
Book Description
My purpose in this monograph is to present an essentially self-contained account of the mathematical theory of Galerkin finite element methods as applied to parabolic partial differential equations. The emphases and selection of topics reflects my own involvement in the field over the past 25 years, and my ambition has been to stress ideas and methods of analysis rather than to describe the most general and farreaching results possible. Since the formulation and analysis of Galerkin finite element methods for parabolic problems are generally based on ideas and results from the corresponding theory for stationary elliptic problems, such material is often included in the presentation. The basis of this work is my earlier text entitled Galerkin Finite Element Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, from 1984. This has been out of print for several years, and I have felt a need and been encouraged by colleagues and friends to publish an updated version. In doing so I have included most of the contents of the 14 chapters of the earlier work in an updated and revised form, and added four new chapters, on semigroup methods, on multistep schemes, on incomplete iterative solution of the linear algebraic systems at the time levels, and on semilinear equations. The old chapters on fully discrete methods have been reworked by first treating the time discretization of an abstract differential equation in a Hilbert space setting, and the chapter on the discontinuous Galerkin method has been completely rewritten.
Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications
Author: Victor A. Galaktionov
Publisher: CRC Press
ISBN: 0203998065
Category : Mathematics
Languages : en
Pages : 384
Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un
Publisher: CRC Press
ISBN: 0203998065
Category : Mathematics
Languages : en
Pages : 384
Book Description
Unlike the classical Sturm theorems on the zeros of solutions of second-order ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by Plya in the 1930's and rediscovered in part several times since, it was not un
Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)
Author: Boyan Sirakov
Publisher: World Scientific
ISBN: 9813272899
Category : Mathematics
Languages : en
Pages : 5393
Book Description
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Publisher: World Scientific
ISBN: 9813272899
Category : Mathematics
Languages : en
Pages : 5393
Book Description
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
Nonlinear Analysis - Theory and Methods
Author: Nikolaos S. Papageorgiou
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.