Deep Generative Models, and Data Augmentation, Labelling, and Imperfections PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Deep Generative Models, and Data Augmentation, Labelling, and Imperfections PDF full book. Access full book title Deep Generative Models, and Data Augmentation, Labelling, and Imperfections by Sandy Engelhardt. Download full books in PDF and EPUB format.

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections PDF Author: Sandy Engelhardt
Publisher: Springer Nature
ISBN: 3030882101
Category : Computers
Languages : en
Pages : 278

Book Description
This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Deep Generative Models, and Data Augmentation, Labelling, and Imperfections PDF Author: Sandy Engelhardt
Publisher: Springer Nature
ISBN: 3030882101
Category : Computers
Languages : en
Pages : 278

Book Description
This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic. DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community. For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.

De novo Molecular Design

De novo Molecular Design PDF Author: Gisbert Schneider
Publisher: John Wiley & Sons
ISBN: 3527677038
Category : Medical
Languages : en
Pages : 540

Book Description
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.

Generative Adversarial Networks for Image-to-Image Translation

Generative Adversarial Networks for Image-to-Image Translation PDF Author: Arun Solanki
Publisher: Academic Press
ISBN: 0128236132
Category : Science
Languages : en
Pages : 446

Book Description
Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial Network) concept starting from the original GAN network to various GAN-based systems such as Deep Convolutional GANs (DCGANs), Conditional GANs (cGANs), StackGAN, Wasserstein GANs (WGAN), cyclical GANs, and many more. The book also provides readers with detailed real-world applications and common projects built using the GAN system with respective Python code. A typical GAN system consists of two neural networks, i.e., generator and discriminator. Both of these networks contest with each other, similar to game theory. The generator is responsible for generating quality images that should resemble ground truth, and the discriminator is accountable for identifying whether the generated image is a real image or a fake image generated by the generator. Being one of the unsupervised learning-based architectures, GAN is a preferred method in cases where labeled data is not available. GAN can generate high-quality images, images of human faces developed from several sketches, convert images from one domain to another, enhance images, combine an image with the style of another image, change the appearance of a human face image to show the effects in the progression of aging, generate images from text, and many more applications. GAN is helpful in generating output very close to the output generated by humans in a fraction of second, and it can efficiently produce high-quality music, speech, and images. - Introduces the concept of Generative Adversarial Networks (GAN), including the basics of Generative Modelling, Deep Learning, Autoencoders, and advanced topics in GAN - Demonstrates GANs for a wide variety of applications, including image generation, Big Data and data analytics, cloud computing, digital transformation, E-Commerce, and Artistic Neural Networks - Includes a wide variety of biomedical and scientific applications, including unsupervised learning, natural language processing, pattern recognition, image and video processing, and disease diagnosis - Provides a robust set of methods that will help readers to appropriately and judiciously use the suitable GANs for their applications

Generative Adversarial Networks with Python

Generative Adversarial Networks with Python PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 655

Book Description
Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.

Computational Topology

Computational Topology PDF Author: Herbert Edelsbrunner
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241

Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

Deep Generative Models

Deep Generative Models PDF Author: Anirban Mukhopadhyay
Publisher: Springer Nature
ISBN: 3031727444
Category :
Languages : en
Pages : 235

Book Description


Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems PDF Author: Jacques Blanc-Talon
Publisher: Springer Nature
ISBN: 3030406059
Category : Computers
Languages : en
Pages : 576

Book Description
This book constitutes the proceedings of the 20th INternational Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2020, held in Auckland, New Zealand, in February 2020. The 48 papers presented in this volume were carefully reviewed and selected from a total of 78 submissions. They were organized in topical sections named: deep learning; biomedical image analysis; biometrics and identification; image analysis; image restauration, compression and watermarking; tracking, and mapping and scene analysis.

Deep Generative Modeling

Deep Generative Modeling PDF Author: Jakub M. Tomczak
Publisher: Springer Nature
ISBN: 3030931587
Category : Computers
Languages : en
Pages : 210

Book Description
This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Computational Science – ICCS 2024

Computational Science – ICCS 2024 PDF Author: Leonardo Franco
Publisher: Springer Nature
ISBN: 3031637496
Category :
Languages : en
Pages : 402

Book Description


Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers

Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers PDF Author: Kumar, Abhishek
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 536

Book Description
The integration of generative AI and deep learning techniques for Alzheimer's disease detection significantly impacts the research community by advancing diagnostic accuracy and providing a comprehensive understanding of the disease. By combining multiple data modalities, including imaging, genetics, and clinical data, researchers can improve diagnostic precision and develop personalized treatment strategies. Generative AI facilitates efficient data utilization through dataset augmentation, fostering innovation and collaboration across interdisciplinary fields. These methodologies forward the exploration of new diagnostic tools while expediting their application in clinical practice, benefiting patients through early detection and intervention. The incorporation of generative AI may enhance research capabilities, promote collaboration, and improve Alzheimer's disease management and patient outcomes. Deep Generative Models for Integrative Analysis of Alzheimer's Biomarkers explores the integration of deep generative models in disease diagnosis, biomarking, and prediction. It examines the use of tools like data analysis, natural language processing, and machine learning for effective Alzheimer’s research. This book covers topics such as data analysis, biomedicine, and machine learning, and is a useful resource for computer engineers, biologists, scientists, medical professionals, healthcare workers, academicians, and researchers.