Binary Quadratic Forms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Binary Quadratic Forms PDF full book. Access full book title Binary Quadratic Forms by Johannes Buchmann. Download full books in PDF and EPUB format.

Binary Quadratic Forms

Binary Quadratic Forms PDF Author: Johannes Buchmann
Publisher: Springer Science & Business Media
ISBN: 3540463682
Category : Mathematics
Languages : en
Pages : 328

Book Description
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.

Binary Quadratic Forms

Binary Quadratic Forms PDF Author: Johannes Buchmann
Publisher: Springer Science & Business Media
ISBN: 3540463682
Category : Mathematics
Languages : en
Pages : 328

Book Description
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.

Introduction to Quadratic Forms

Introduction to Quadratic Forms PDF Author: Onorato Timothy O’Meara
Publisher: Springer
ISBN: 366241922X
Category : Mathematics
Languages : en
Pages : 354

Book Description


The Algebraic and Geometric Theory of Quadratic Forms

The Algebraic and Geometric Theory of Quadratic Forms PDF Author: Richard S. Elman
Publisher: American Mathematical Soc.
ISBN: 9780821873229
Category : Mathematics
Languages : en
Pages : 456

Book Description
This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.

Rational Quadratic Forms

Rational Quadratic Forms PDF Author: J. W. S. Cassels
Publisher: Courier Dover Publications
ISBN: 0486466701
Category : Mathematics
Languages : en
Pages : 429

Book Description
Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.

Quadratic Forms and Their Applications

Quadratic Forms and Their Applications PDF Author: Eva Bayer-Fluckiger
Publisher: American Mathematical Soc.
ISBN: 0821827790
Category : Mathematics
Languages : en
Pages : 330

Book Description
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.

Quaternion Algebras

Quaternion Algebras PDF Author: John Voight
Publisher: Springer Nature
ISBN: 3030566943
Category : Mathematics
Languages : en
Pages : 877

Book Description
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.

Bilinear Algebra

Bilinear Algebra PDF Author: Kazimierz Szymiczek
Publisher: CRC Press
ISBN: 9789056990763
Category : Mathematics
Languages : en
Pages : 508

Book Description
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.

The Algebraic Theory of Quadratic Forms

The Algebraic Theory of Quadratic Forms PDF Author: Tsit-Yuen Lam
Publisher: Addison-Wesley
ISBN: 9780805356663
Category : Mathematics
Languages : en
Pages : 344

Book Description


The Sensual (quadratic) Form

The Sensual (quadratic) Form PDF Author: John Horton Conway
Publisher: American Mathematical Soc.
ISBN: 1470448424
Category : Mathematics
Languages : en
Pages : 167

Book Description
John Horton Conway's unique approach to quadratic forms was the subject of the Hedrick Lectures that he gave in August of 1991 at the Joint Meetings of the Mathematical Association of America and the American Mathematical Society in Orono, Maine. This book presents the substance of those lectures. The book should not be thought of as a serious textbook on the theory of quadratic forms. It consists rather of a number of essays on particular aspects of quadratic forms that have interested the author. The lectures are self-contained and will be accessible to the generally informed reader who has no particular background in quadratic form theory. The minor exceptions should not interrupt the flow of ideas. The afterthoughts to the lectures contain discussion of related matters that occasionally presuppose greater knowledge.

Primes of the Form X2 + Ny2

Primes of the Form X2 + Ny2 PDF Author: David A. Cox
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 380

Book Description
Modern number theory began with the work of Euler and Gauss to understand and extend the many unsolved questions left behind by Fermat. In the course of their investigations, they uncovered new phenomena in need of explanation, which over time led to the discovery of field theory and its intimate connection with complex multiplication. While most texts concentrate on only the elementary or advanced aspects of this story, Primes of the Form x2 + ny2 begins with Fermat and explains how his work ultimately gave birth to quadratic reciprocity and the genus theory of quadratic forms. Further, the book shows how the results of Euler and Gauss can be fully understood only in the context of class field theory. Finally, in order to bring class field theory down to earth, the book explores some of the magnificent formulas of complex multiplication. The central theme of the book is the story of which primes p can be expressed in the form x2 + ny2. An incomplete answer is given using quadratic forms. A better though abstract answer comes from class field theory, and finally, a concrete answer is provided by complex multiplication. Along the way, the reader is introduced to some wonderful number theory. Numerous exercises and examples are included. The book is written to be enjoyed by readers with modest mathematical backgrounds. Chapter 1 uses basic number theory and abstract algebra, while chapters 2 and 3 require Galois theory and complex analysis, respectively.