Author: Nikos Tzanakis
Publisher: Walter de Gruyter
ISBN: 3110281147
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.
Elliptic Diophantine Equations
Author: Nikos Tzanakis
Publisher: Walter de Gruyter
ISBN: 3110281147
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.
Publisher: Walter de Gruyter
ISBN: 3110281147
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book presents in a unified and concrete way the beautiful and deep mathematics - both theoretical and computational - on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in the literature. Some results are hidden behind a number of routines in software packages, like Magma and Maple; professional mathematicians very often use these routines just as a black-box, having little idea about the mathematical treasure behind them. Almost 20 years have passed since the first publications on the explicit solution of elliptic Diophantine equations with the use of elliptic logarithms. The "art" of solving this type of equation has now reached its full maturity. The author is one of the main persons that contributed to the development of this art. The monograph presents a well-balanced combination of a variety of theoretical tools (from Diophantine geometry, algebraic number theory, theory of linear forms in logarithms of various forms - real/complex and p-adic elliptic - and classical complex analysis), clever computational methods and techniques (LLL algorithm and de Weger's reduction technique, AGM algorithm, Zagier's technique for computing elliptic integrals), ready-to-use computer packages. A result is the solution in practice of a large general class of Diophantine equations.
Algorithmic Number Theory
Author: Wieb Bosma
Publisher: Springer
ISBN: 3540449949
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000. The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.
Publisher: Springer
ISBN: 3540449949
Category : Mathematics
Languages : en
Pages : 610
Book Description
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000. The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.
The Algorithmic Resolution of Diophantine Equations
Author: Nigel P. Smart
Publisher: Cambridge University Press
ISBN: 9780521646338
Category : Mathematics
Languages : en
Pages : 264
Book Description
A coherent account of the computational methods used to solve diophantine equations.
Publisher: Cambridge University Press
ISBN: 9780521646338
Category : Mathematics
Languages : en
Pages : 264
Book Description
A coherent account of the computational methods used to solve diophantine equations.
Elliptic Diophantine Equations: A Concrete Approach Via the Elliptic Logarithm
Author: Nikolaos G. ; Tzanakis Tzanakis (Nikos)
Publisher:
ISBN: 9783110281156
Category :
Languages : en
Pages : 195
Book Description
Publisher:
ISBN: 9783110281156
Category :
Languages : en
Pages : 195
Book Description
Exponential Diophantine Equations
Author: T. N. Shorey
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Publisher: Cambridge University Press
ISBN: 9780521091701
Category : Mathematics
Languages : en
Pages : 0
Book Description
This is a integrated presentation of the theory of exponential diophantine equations. The authors present, in a clear and unified fashion, applications to exponential diophantine equations and linear recurrence sequences of the Gelfond-Baker theory of linear forms in logarithms of algebraic numbers. Topics covered include the Thue equations, the generalised hyperelliptic equation, and the Fermat and Catalan equations. The necessary preliminaries are given in the first three chapters. Each chapter ends with a section giving details of related results.
Solving $S$-Unit, Mordell, Thue, Thue–Mahler and Generalized Ramanujan–Nagell Equations via the Shimura–Taniyama Conjecture
Author: Rafael von Känel
Publisher: American Mathematical Society
ISBN: 1470464160
Category : Mathematics
Languages : en
Pages : 154
Book Description
View the abstract.
Publisher: American Mathematical Society
ISBN: 1470464160
Category : Mathematics
Languages : en
Pages : 154
Book Description
View the abstract.
A Comprehensive Course in Number Theory
Author: Alan Baker
Publisher: Cambridge University Press
ISBN: 1139560824
Category : Mathematics
Languages : en
Pages : 269
Book Description
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy–Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.
Publisher: Cambridge University Press
ISBN: 1139560824
Category : Mathematics
Languages : en
Pages : 269
Book Description
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy–Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.
Acta arithmetica
Elliptic Curves
Author: Susanne Schmitt
Publisher: Walter de Gruyter
ISBN: 3110198010
Category : Mathematics
Languages : en
Pages : 378
Book Description
The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.
Publisher: Walter de Gruyter
ISBN: 3110198010
Category : Mathematics
Languages : en
Pages : 378
Book Description
The basics of the theory of elliptic curves should be known to everybody, be he (or she) a mathematician or a computer scientist. Especially everybody concerned with cryptography should know the elements of this theory. The purpose of the present textbook is to give an elementary introduction to elliptic curves. Since this branch of number theory is particularly accessible to computer-assisted calculations, the authors make use of it by approaching the theory under a computational point of view. Specifically, the computer-algebra package SIMATH can be applied on several occasions. However, the book can be read also by those not interested in any computations. Of course, the theory of elliptic curves is very comprehensive and becomes correspondingly sophisticated. That is why the authors made a choice of the topics treated. Topics covered include the determination of torsion groups, computations regarding the Mordell-Weil group, height calculations, S-integral points. The contents is kept as elementary as possible. In this way it becomes obvious in which respect the book differs from the numerous textbooks on elliptic curves nowadays available.
Polynomial Diophantine Equations
Author: Bogdan Grechuk
Publisher: Springer Nature
ISBN: 3031629493
Category :
Languages : en
Pages : 824
Book Description
Publisher: Springer Nature
ISBN: 3031629493
Category :
Languages : en
Pages : 824
Book Description