Author: Hongbing Su
Publisher: American Mathematical Soc.
ISBN: 0821826077
Category : Mathematics
Languages : en
Pages : 98
Book Description
In this paper a [italic capital]K-theoretic classification is given of the real rank zero [italic capital]C*-algebras that can be expressed as inductive limits of sequences of finite direct sums of matrix algebras over finite connected graphs (possibly with multiple vertices). The special case that the graphs are circles is due to Elliott.
On the Classification of $C^*$-algebras of Real Rank Zero: Inductive Limits of Matrix Algebras over Non-Hausdorff Graphs
Author: Hongbing Su
Publisher: American Mathematical Soc.
ISBN: 0821826077
Category : Mathematics
Languages : en
Pages : 98
Book Description
In this paper a [italic capital]K-theoretic classification is given of the real rank zero [italic capital]C*-algebras that can be expressed as inductive limits of sequences of finite direct sums of matrix algebras over finite connected graphs (possibly with multiple vertices). The special case that the graphs are circles is due to Elliott.
Publisher: American Mathematical Soc.
ISBN: 0821826077
Category : Mathematics
Languages : en
Pages : 98
Book Description
In this paper a [italic capital]K-theoretic classification is given of the real rank zero [italic capital]C*-algebras that can be expressed as inductive limits of sequences of finite direct sums of matrix algebras over finite connected graphs (possibly with multiple vertices). The special case that the graphs are circles is due to Elliott.
From the Basic Homotopy Lemma to the Classification of C*-algebras
Author: Huaxin Lin
Publisher: American Mathematical Soc.
ISBN: 1470434903
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book examines some recent developments in the theory of -algebras, which are algebras of operators on Hilbert spaces. An elementary introduction to the technical part of the theory is given via a basic homotopy lemma concerning a pair of almost commuting unitaries. The book presents an outline of the background as well as some recent results of the classification of simple amenable -algebras, otherwise known as the Elliott program. This includes some stable uniqueness theorems and a revisiting of Bott maps via stable homotopy. Furthermore, -theory related rotation maps are introduced. The book is based on lecture notes from the CBMS lecture sequence at the University of Wyoming in the summer of 2015.
Publisher: American Mathematical Soc.
ISBN: 1470434903
Category : Mathematics
Languages : en
Pages : 249
Book Description
This book examines some recent developments in the theory of -algebras, which are algebras of operators on Hilbert spaces. An elementary introduction to the technical part of the theory is given via a basic homotopy lemma concerning a pair of almost commuting unitaries. The book presents an outline of the background as well as some recent results of the classification of simple amenable -algebras, otherwise known as the Elliott program. This includes some stable uniqueness theorems and a revisiting of Bott maps via stable homotopy. Furthermore, -theory related rotation maps are introduced. The book is based on lecture notes from the CBMS lecture sequence at the University of Wyoming in the summer of 2015.
An Introduction to the Classification of Amenable C*-algebras
Author: Huaxin Lin
Publisher: World Scientific
ISBN: 9810246803
Category : Mathematics
Languages : en
Pages : 333
Book Description
The theory and applications of C?-algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C?-algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C?-algebras (up to isomorphism) by their K-theoretical data. It started with the classification of AT-algebras with real rank zero. Since then great efforts have been made to classify amenable C?-algebras, a class of C?-algebras that arises most naturally. For example, a large class of simple amenable C?-algebras is discovered to be classifiable. The application of these results to dynamical systems has been established.This book introduces the recent development of the theory of the classification of amenable C?-algebras ? the first such attempt. The first three chapters present the basics of the theory of C?-algebras which are particularly important to the theory of the classification of amenable C?-algebras. Chapter 4 otters the classification of the so-called AT-algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C?-algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH-algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C?-algebras. Besides being as an introduction to the theory of the classification of amenable C?-algebras, it is a comprehensive reference for those more familiar with the subject.
Publisher: World Scientific
ISBN: 9810246803
Category : Mathematics
Languages : en
Pages : 333
Book Description
The theory and applications of C?-algebras are related to fields ranging from operator theory, group representations and quantum mechanics, to non-commutative geometry and dynamical systems. By Gelfand transformation, the theory of C?-algebras is also regarded as non-commutative topology. About a decade ago, George A. Elliott initiated the program of classification of C?-algebras (up to isomorphism) by their K-theoretical data. It started with the classification of AT-algebras with real rank zero. Since then great efforts have been made to classify amenable C?-algebras, a class of C?-algebras that arises most naturally. For example, a large class of simple amenable C?-algebras is discovered to be classifiable. The application of these results to dynamical systems has been established.This book introduces the recent development of the theory of the classification of amenable C?-algebras ? the first such attempt. The first three chapters present the basics of the theory of C?-algebras which are particularly important to the theory of the classification of amenable C?-algebras. Chapter 4 otters the classification of the so-called AT-algebras of real rank zero. The first four chapters are self-contained, and can serve as a text for a graduate course on C?-algebras. The last two chapters contain more advanced material. In particular, they deal with the classification theorem for simple AH-algebras with real rank zero, the work of Elliott and Gong. The book contains many new proofs and some original results related to the classification of amenable C?-algebras. Besides being as an introduction to the theory of the classification of amenable C?-algebras, it is a comprehensive reference for those more familiar with the subject.
Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal$'$cev
Author: Leonid A. Bokut'
Publisher: American Mathematical Soc.
ISBN: 0821851365
Category : Algebra
Languages : en
Pages : 742
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821851365
Category : Algebra
Languages : en
Pages : 742
Book Description
Flows on 2-dimensional Manifolds
Author: Igor Nikolaev
Publisher: Springer
ISBN: 354048759X
Category : Mathematics
Languages : en
Pages : 305
Book Description
Time-evolution in low-dimensional topological spaces is a subject of puzzling vitality. This book is a state-of-the-art account, covering classical and new results. The volume comprises Poincaré-Bendixson, local and Morse-Smale theories, as well as a carefully written chapter on the invariants of surface flows. Of particular interest are chapters on the Anosov-Weil problem, C*-algebras and non-compact surfaces. The book invites graduate students and non-specialists to a fascinating realm of research. It is a valuable source of reference to the specialists.
Publisher: Springer
ISBN: 354048759X
Category : Mathematics
Languages : en
Pages : 305
Book Description
Time-evolution in low-dimensional topological spaces is a subject of puzzling vitality. This book is a state-of-the-art account, covering classical and new results. The volume comprises Poincaré-Bendixson, local and Morse-Smale theories, as well as a carefully written chapter on the invariants of surface flows. Of particular interest are chapters on the Anosov-Weil problem, C*-algebras and non-compact surfaces. The book invites graduate students and non-specialists to a fascinating realm of research. It is a valuable source of reference to the specialists.
$C^*$-Algebras: 1943-1993
Author:
Publisher: American Mathematical Soc.
ISBN: 0821851756
Category : C*-algebras
Languages : en
Pages : 434
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821851756
Category : C*-algebras
Languages : en
Pages : 434
Book Description
K-Theory for Operator Algebras
Author: Bruce Blackadar
Publisher: Cambridge University Press
ISBN: 9780521635325
Category : Mathematics
Languages : en
Pages : 326
Book Description
This book is the only comprehensive treatment of K-theory for operator algebras.
Publisher: Cambridge University Press
ISBN: 9780521635325
Category : Mathematics
Languages : en
Pages : 326
Book Description
This book is the only comprehensive treatment of K-theory for operator algebras.
Noncommutative Geometry
Author: Igor V. Nikolaev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110788810
Category : Mathematics
Languages : en
Pages : 292
Book Description
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110788810
Category : Mathematics
Languages : en
Pages : 292
Book Description
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
K-Theory for Group C*-Algebras and Semigroup C*-Algebras
Author: Joachim Cuntz
Publisher: Birkhäuser
ISBN: 3319599151
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.
Publisher: Birkhäuser
ISBN: 3319599151
Category : Mathematics
Languages : en
Pages : 325
Book Description
This book gives an account of the necessary background for group algebras and crossed products for actions of a group or a semigroup on a space and reports on some very recently developed techniques with applications to particular examples. Much of the material is available here for the first time in book form. The topics discussed are among the most classical and intensely studied C*-algebras. They are important for applications in fields as diverse as the theory of unitary group representations, index theory, the topology of manifolds or ergodic theory of group actions. Part of the most basic structural information for such a C*-algebra is contained in its K-theory. The determination of the K-groups of C*-algebras constructed from group or semigroup actions is a particularly challenging problem. Paul Baum and Alain Connes proposed a formula for the K-theory of the reduced crossed product for a group action that would permit, in principle, its computation. By work of many hands, the formula has by now been verified for very large classes of groups and this work has led to the development of a host of new techniques. An important ingredient is Kasparov's bivariant K-theory. More recently, also the C*-algebras generated by the regular representation of a semigroup as well as the crossed products for actions of semigroups by endomorphisms have been studied in more detail. Intriguing examples of actions of such semigroups come from ergodic theory as well as from algebraic number theory. The computation of the K-theory of the corresponding crossed products needs new techniques. In cases of interest the K-theory of the algebras reflects ergodic theoretic or number theoretic properties of the action.
Equivariant K-Theory and Freeness of Group Actions on C*-Algebras
Author: N. Christopher Phillips
Publisher: Springer
ISBN: 354047868X
Category : Mathematics
Languages : en
Pages : 380
Book Description
Freeness of an action of a compact Lie group on a compact Hausdorff space is equivalent to a simple condition on the corresponding equivariant K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. Lacking an appropriate definition of a free action on a C*-algebra, one is led instead to the study of actions satisfying conditions on equivariant K-theory - in the cases of spaces, simply freeness. The first third of this book is a detailed exposition of equivariant K-theory and KK-theory, assuming only a general knowledge of C*-algebras and some ordinary K-theory. It continues with the author's research on K-theoretic freeness of actions. It is shown that many properties of freeness generalize, while others do not, and that certain forms of K-theoretic freeness are related to other noncommutative measures of freeness, such as the Connes spectrum. The implications of K-theoretic freeness for actions on type I and AF algebras are also examined, and in these cases K-theoretic freeness is characterized analytically.
Publisher: Springer
ISBN: 354047868X
Category : Mathematics
Languages : en
Pages : 380
Book Description
Freeness of an action of a compact Lie group on a compact Hausdorff space is equivalent to a simple condition on the corresponding equivariant K-theory. This fact can be regarded as a theorem on actions on a commutative C*-algebra, namely the algebra of continuous complex-valued functions on the space. The successes of "noncommutative topology" suggest that one should try to generalize this result to actions on arbitrary C*-algebras. Lacking an appropriate definition of a free action on a C*-algebra, one is led instead to the study of actions satisfying conditions on equivariant K-theory - in the cases of spaces, simply freeness. The first third of this book is a detailed exposition of equivariant K-theory and KK-theory, assuming only a general knowledge of C*-algebras and some ordinary K-theory. It continues with the author's research on K-theoretic freeness of actions. It is shown that many properties of freeness generalize, while others do not, and that certain forms of K-theoretic freeness are related to other noncommutative measures of freeness, such as the Connes spectrum. The implications of K-theoretic freeness for actions on type I and AF algebras are also examined, and in these cases K-theoretic freeness is characterized analytically.