Author: Esra Betul Koc Ozturk
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 15
Book Description
In this paper we define nonnull and nullpseudospherical Smarandache curves according to the Sabban frame of a spacelike curve lying on pseudosphere in Minkowski 3-space.
On Pseudospherical Smarandache Curves in Minkowski 3-Space
Author: Esra Betul Koc Ozturk
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 15
Book Description
In this paper we define nonnull and nullpseudospherical Smarandache curves according to the Sabban frame of a spacelike curve lying on pseudosphere in Minkowski 3-space.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 15
Book Description
In this paper we define nonnull and nullpseudospherical Smarandache curves according to the Sabban frame of a spacelike curve lying on pseudosphere in Minkowski 3-space.
The Smarandache Curves on 𝑆2 1 and Its Duality on 𝐻2 0
Author: Atakan Tugkan Yakut
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 12
Book Description
We introduce special Smarandache curves based on Sabban frame on 𝑆2 1 and we investigate geodesic curvatures of Smarandache curves on de Sitterand hyperbolic spaces.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 12
Book Description
We introduce special Smarandache curves based on Sabban frame on 𝑆2 1 and we investigate geodesic curvatures of Smarandache curves on de Sitterand hyperbolic spaces.
COMPUTING SPECIAL SMARANDACHE CURVES ACCORDING TO DARBOUX FRAME IN EUCLIDEAN 4-SPACE
Author: M. KHALIFA SAAD
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 24
Book Description
In this paper, we study some special Smarandache curves and their di erential geometric properties according to Darboux frame in Euclidean 4-space E4. Also, we compute some of these curves which lie fully on a hypersurface in E4. Moreover, we defray some computational examples in support our main results.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 24
Book Description
In this paper, we study some special Smarandache curves and their di erential geometric properties according to Darboux frame in Euclidean 4-space E4. Also, we compute some of these curves which lie fully on a hypersurface in E4. Moreover, we defray some computational examples in support our main results.
Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space
Author: Mahmut Mak
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 16
Book Description
In this paper, we investigate special spacelike Smarandache curves of timelike curves according to Sabban frame in Anti de Sitter 3-Space. Moreover, we give the relationship between the base curve and its Smarandache curve associated with theirs Sabban Frames.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 16
Book Description
In this paper, we investigate special spacelike Smarandache curves of timelike curves according to Sabban frame in Anti de Sitter 3-Space. Moreover, we give the relationship between the base curve and its Smarandache curve associated with theirs Sabban Frames.
MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES), VOLUME 3, 2016
Author: Linfan MAO
Publisher: Infinite Study
ISBN: 1599734958
Category :
Languages : en
Pages : 169
Book Description
Contents Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space By Mahmut Mak and Hasan Altınba¸s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01 Conformal Ricci Soliton in Almost C() Manifold By Tamalika Dutta, Arindam Bhattacharyya and Srabani Debnath . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Labeled Graph – A Mathematical Element By Linfan MAO . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Tchebychev and Brahmagupta Polynomials and Golden Ratio –Two New Interconnections By Shashikala P. and R. Rangarajan . . . . . . . . . . . . . . . . . . . . . 57 On the Quaternionic Normal Curves in the Semi-Euclidean Space E4 2 By ¨Onder G¨okmen Yildiz and Siddika ¨Ozkaldi Karaku¸s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Global Equitable Domination Number of Some Wheel Related Graphs By S.K.Vaidya and R.M.Pandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 The Pebbling Number of Jahangir Graph J2,m By A.Lourdusamy and T.Mathivanan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 On 4-Total Product Cordiality of Some Corona Graphs By M.Sivakumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 On m-Neighbourly Irregular Instuitionistic Fuzzy Graphs By N.R.Santhi Maheswari and C.Sekar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Star Edge Coloring of Corona Product of Path with Some Graphs By Kaliraj K., Sivakami R. and Vernold Vivin J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Balance Index Set of Caterpillar and Lobster Graphs By Pradeep G.Bhat and Devadas Nayak C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Lagrange Space and Generalized Lagrange Space Arising From Metric By M.N.Tripathi and O.P.Pandey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A Study on Hamiltonian Property of Cayley Graphs Over Non-Abelian Groups By A.Riyas and K.Geetha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Mean Cordial Labelling of Some Star-Related Graphs By Ujwala Deshmukh and Vahida Y. Shaikh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Some New Families of Odd Graceful Graphs By Mathew Varkey T.K and Sunoj. B.S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Publisher: Infinite Study
ISBN: 1599734958
Category :
Languages : en
Pages : 169
Book Description
Contents Spacelike Smarandache Curves of Timelike Curves in Anti de Sitter 3-Space By Mahmut Mak and Hasan Altınba¸s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01 Conformal Ricci Soliton in Almost C() Manifold By Tamalika Dutta, Arindam Bhattacharyya and Srabani Debnath . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Labeled Graph – A Mathematical Element By Linfan MAO . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Tchebychev and Brahmagupta Polynomials and Golden Ratio –Two New Interconnections By Shashikala P. and R. Rangarajan . . . . . . . . . . . . . . . . . . . . . 57 On the Quaternionic Normal Curves in the Semi-Euclidean Space E4 2 By ¨Onder G¨okmen Yildiz and Siddika ¨Ozkaldi Karaku¸s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Global Equitable Domination Number of Some Wheel Related Graphs By S.K.Vaidya and R.M.Pandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 The Pebbling Number of Jahangir Graph J2,m By A.Lourdusamy and T.Mathivanan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 On 4-Total Product Cordiality of Some Corona Graphs By M.Sivakumar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 On m-Neighbourly Irregular Instuitionistic Fuzzy Graphs By N.R.Santhi Maheswari and C.Sekar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Star Edge Coloring of Corona Product of Path with Some Graphs By Kaliraj K., Sivakami R. and Vernold Vivin J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Balance Index Set of Caterpillar and Lobster Graphs By Pradeep G.Bhat and Devadas Nayak C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Lagrange Space and Generalized Lagrange Space Arising From Metric By M.N.Tripathi and O.P.Pandey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A Study on Hamiltonian Property of Cayley Graphs Over Non-Abelian Groups By A.Riyas and K.Geetha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Mean Cordial Labelling of Some Star-Related Graphs By Ujwala Deshmukh and Vahida Y. Shaikh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Some New Families of Odd Graceful Graphs By Mathew Varkey T.K and Sunoj. B.S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
International Journal of Mathematical Combinatorics, Volume 3, 2016
Author: Linfan Mao
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 169
Book Description
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 169
Book Description
The mathematical combinatorics is a subject that applying combinatorial notion to all mathematics and all sciences for understanding the reality of things in the universe. The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.
Smarandache Curves in Minkowski Space-time
Author: Melih Turgut
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 5
Book Description
A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache Curve.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 5
Book Description
A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache Curve.
Smarandache Geometries & Map Theories with Applications (I) [English and Chinese]
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Noether's Theorems
Author: Gennadi Sardanashvily
Publisher: Springer
ISBN: 9462391718
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Publisher: Springer
ISBN: 9462391718
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Geometry of Complex Numbers
Author: Hans Schwerdtfeger
Publisher: Courier Corporation
ISBN: 0486135861
Category : Mathematics
Languages : en
Pages : 228
Book Description
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.
Publisher: Courier Corporation
ISBN: 0486135861
Category : Mathematics
Languages : en
Pages : 228
Book Description
Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.