On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks PDF full book. Access full book title On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks by Guo Ping Liu. Download full books in PDF and EPUB format.

On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks

On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks PDF Author: Guo Ping Liu
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages :

Book Description


On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks

On-line Identification of Nonlinear Systems Using Volterra Polynomial Basis Function Neural Networks PDF Author: Guo Ping Liu
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages :

Book Description


Nonlinear Identification and Control

Nonlinear Identification and Control PDF Author: G.P. Liu
Publisher: Springer Science & Business Media
ISBN: 1447103459
Category : Mathematics
Languages : en
Pages : 224

Book Description
The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.

Nonlinear System Identification

Nonlinear System Identification PDF Author: Oliver Nelles
Publisher: Springer Nature
ISBN: 3030474399
Category : Science
Languages : en
Pages : 1235

Book Description
This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.

Nonlinear System Identification

Nonlinear System Identification PDF Author: Oliver Nelles
Publisher: Springer Science & Business Media
ISBN: 3662043238
Category : Technology & Engineering
Languages : en
Pages : 785

Book Description
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models

Identification of Nonlinear Systems Using Neural Networks and Polynomial Models PDF Author: Andrzej Janczak
Publisher: Springer Science & Business Media
ISBN: 9783540231851
Category : Technology & Engineering
Languages : en
Pages : 220

Book Description
This monograph systematically presents the existing identification methods of nonlinear systems using the block-oriented approach It surveys various known approaches to the identification of Wiener and Hammerstein systems which are applicable to both neural network and polynomial models. The book gives a comparative study of their gradient approximation accuracy, computational complexity, and convergence rates and furthermore presents some new and original methods concerning the model parameter adjusting with gradient-based techniques. "Identification of Nonlinear Systems Using Neural Networks and Polynomal Models" is useful for researchers, engineers and graduate students in nonlinear systems and neural network theory.

Neural Network Modeling of Nonlinear Systems Based on Volterra Series Extension of a Linear Model

Neural Network Modeling of Nonlinear Systems Based on Volterra Series Extension of a Linear Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description


Nonlinear system identification. 1. Nonlinear system parameter identification

Nonlinear system identification. 1. Nonlinear system parameter identification PDF Author: Robert Haber
Publisher: Springer Science & Business Media
ISBN: 9780792358565
Category : Nonlinear theories
Languages : en
Pages : 432

Book Description


Nonlinear System Identification

Nonlinear System Identification PDF Author: Stephen A. Billings
Publisher: John Wiley & Sons
ISBN: 1119943590
Category : Technology & Engineering
Languages : en
Pages : 611

Book Description
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.

System Identification (SYSID '03)

System Identification (SYSID '03) PDF Author: Paul Van Den Hof
Publisher: Elsevier
ISBN: 9780080437095
Category : Science
Languages : en
Pages : 2080

Book Description
The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.

A Hybrid Approach for Power Plant Fault Diagnostics

A Hybrid Approach for Power Plant Fault Diagnostics PDF Author: Tamiru Alemu Lemma
Publisher: Springer
ISBN: 3319718711
Category : Technology & Engineering
Languages : en
Pages : 283

Book Description
This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.