On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data PDF full book. Access full book title On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data by Alex Catane Bajamonde. Download full books in PDF and EPUB format.

On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data

On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data PDF Author: Alex Catane Bajamonde
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Book Description


On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data

On Efficient and Robust Estimation in Semiparametric Linear Regression Models with Missing Data PDF Author: Alex Catane Bajamonde
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Book Description


Selected Works of Peter J. Bickel

Selected Works of Peter J. Bickel PDF Author: Jianqing Fan
Publisher: Springer Science & Business Media
ISBN: 1461455448
Category : Mathematics
Languages : en
Pages : 626

Book Description
This volume presents selections of Peter J. Bickel’s major papers, along with comments on their novelty and impact on the subsequent development of statistics as a discipline. Each of the eight parts concerns a particular area of research and provides new commentary by experts in the area. The parts range from Rank-Based Nonparametrics to Function Estimation and Bootstrap Resampling. Peter’s amazing career encompasses the majority of statistical developments in the last half-century or about about half of the entire history of the systematic development of statistics. This volume shares insights on these exciting statistical developments with future generations of statisticians. The compilation of supporting material about Peter’s life and work help readers understand the environment under which his research was conducted. The material will also inspire readers in their own research-based pursuits. This volume includes new photos of Peter Bickel, his biography, publication list, and a list of his students. These give the reader a more complete picture of Peter Bickel as a teacher, a friend, a colleague, and a family man.

Semiparametric Theory and Missing Data

Semiparametric Theory and Missing Data PDF Author: Anastasios Tsiatis
Publisher: Springer Science & Business Media
ISBN: 0387373454
Category : Mathematics
Languages : en
Pages : 392

Book Description
This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.

Robust Statistics, Data Analysis, and Computer Intensive Methods

Robust Statistics, Data Analysis, and Computer Intensive Methods PDF Author: Helmut Rieder
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 454

Book Description
This book gathers together a wide range of contributions on modern techniques which are becoming widely used in statistics. These methods include the bootstrap, nonparametric density estimation, robust regression, and projections and sections.

Handbook of Missing Data Methodology

Handbook of Missing Data Methodology PDF Author: Geert Molenberghs
Publisher: CRC Press
ISBN: 1439854610
Category : Mathematics
Languages : en
Pages : 600

Book Description
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

Applied Missing Data Analysis in the Health Sciences

Applied Missing Data Analysis in the Health Sciences PDF Author: Xiao-Hua Zhou
Publisher: John Wiley & Sons
ISBN: 1118573641
Category : Medical
Languages : en
Pages : 260

Book Description
Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 848

Book Description


Frontiers In Statistics

Frontiers In Statistics PDF Author: Jianqing Fan
Publisher: World Scientific
ISBN: 1908979763
Category : Mathematics
Languages : en
Pages : 552

Book Description
During the last two decades, many areas of statistical inference have experienced phenomenal growth. This book presents a timely analysis and overview of some of these new developments and a contemporary outlook on the various frontiers of statistics.Eminent leaders in the field have contributed 16 review articles and 6 research articles covering areas including semi-parametric models, data analytical nonparametric methods, statistical learning, network tomography, longitudinal data analysis, financial econometrics, time series, bootstrap and other re-sampling methodologies, statistical computing, generalized nonlinear regression and mixed effects models, martingale transform tests for model diagnostics, robust multivariate analysis, single index models and wavelets.This volume is dedicated to Prof. Peter J Bickel in honor of his 65th birthday. The first article of this volume summarizes some of Prof. Bickel's distinguished contributions.

Longitudinal Data Analysis

Longitudinal Data Analysis PDF Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633

Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Robust Mixed Model Analysis

Robust Mixed Model Analysis PDF Author: Jiming Jiang
Publisher: World Scientific
ISBN: 9814733857
Category : Mathematics
Languages : en
Pages : 269

Book Description
Mixed-effects models have found broad applications in various fields. As a result, the interest in learning and using these models is rapidly growing. On the other hand, some of these models, such as the linear mixed models and generalized linear mixed models, are highly parametric, involving distributional assumptions that may not be satisfied in real-life problems. Therefore, it is important, from a practical standpoint, that the methods of inference about these models are robust to violation of model assumptions. Fortunately, there is a full scale of methods currently available that are robust in certain aspects. Learning about these methods is essential for the practice of mixed-effects models.This research monograph provides a comprehensive account of methods of mixed model analysis that are robust in various aspects, such as to violation of model assumptions, or to outliers. It is suitable as a reference book for a practitioner who uses the mixed-effects models, and a researcher who studies these models. It can also be treated as a graduate text for a course on mixed-effects models and their applications.