On Axiomatic Approaches to Vertex Operator Algebras and Modules PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download On Axiomatic Approaches to Vertex Operator Algebras and Modules PDF full book. Access full book title On Axiomatic Approaches to Vertex Operator Algebras and Modules by Igor Frenkel. Download full books in PDF and EPUB format.

On Axiomatic Approaches to Vertex Operator Algebras and Modules

On Axiomatic Approaches to Vertex Operator Algebras and Modules PDF Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79

Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.

On Axiomatic Approaches to Vertex Operator Algebras and Modules

On Axiomatic Approaches to Vertex Operator Algebras and Modules PDF Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821825550
Category : Mathematics
Languages : en
Pages : 79

Book Description
The basic definitions and properties of vertex operator algebras, modules, intertwining operators and related concepts are presented, following a fundamental analogy with Lie algebra theory. The first steps in the development of the general theory are taken, and various natural and useful reformulations of the axioms are given. In particular, tensor products of algebras and modules, adjoint vertex operators and contragradient modules, adjoint intertwining operators and fusion rules are studied in greater depth. This paper lays the monodromy-free axiomatic foundation of the general theory of vertex operator algebras, modules and intertwining operators.

Vertex Operator Algebras and the Monster

Vertex Operator Algebras and the Monster PDF Author: Igor Frenkel
Publisher: Academic Press
ISBN: 0080874541
Category : Mathematics
Languages : en
Pages : 563

Book Description
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves PDF Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418

Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$ PDF Author: Alex J. Feingold
Publisher: American Mathematical Soc.
ISBN: 0821851284
Category : Mathematics
Languages : en
Pages : 158

Book Description
The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory. This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra Dn(1). They also review and extend Chevalley's spinor construction of the 24-dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8-dimensional D4-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Greiss, and E8 algebras and explain some of their similarities. A Third goal is to provide a purely spinor construction of the exceptional affine Lie algebra E8(1), a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra. Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in the spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.

Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations PDF Author: James Lepowsky
Publisher: Springer Science & Business Media
ISBN: 0817681868
Category : Mathematics
Languages : en
Pages : 330

Book Description
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.

On Axiomatic Approaches to Vertex Operator Algebras and Modules

On Axiomatic Approaches to Vertex Operator Algebras and Modules PDF Author: Igor Frenkel
Publisher: American Mathematical Soc.
ISBN: 9780821862179
Category : Mathematics
Languages : en
Pages : 84

Book Description
The notion of vertex operator algebra arises naturally in the vertex operator construction of the Monster---the largest sporadic finite simple group. From another perspective, the theory of vertex operator algebras and their modules forms the algebraic foundation of conformal field theory. Vertex operator algebras and conformal field theory are now known to be deeply related to many important areas of mathematics. This essentially self-contained monograph develops the basic axiomatic theory of vertex operator algebras and their modules and intertwining operators, following a fundamental analogy with Lie algebra theory. The main axiom, the ''Jacobi(-Cauchy) identity'', is a far-reaching analog of the Jacobi identity for Lie algebras. The authors show that the Jacobi identity is equivalent to suitably formulated rationality, commutativity, and associativity properties of products of quantum fields. A number of other foundational and useful results are also developed. This work was originally distributed as a preprint in 1989, and in view of the current widespread interest in the subject among mathematicians and theoretical physicists, its publication and availability should prove no less useful than when it was written.

Affine, Vertex and W-algebras

Affine, Vertex and W-algebras PDF Author: Dražen Adamović
Publisher: Springer Nature
ISBN: 3030329062
Category : Mathematics
Languages : en
Pages : 224

Book Description
This book focuses on recent developments in the theory of vertex algebras, with particular emphasis on affine vertex algebras, affine W-algebras, and W-algebras appearing in physical theories such as logarithmic conformal field theory. It is widely accepted in the mathematical community that the best way to study the representation theory of affine Kac–Moody algebras is by investigating the representation theory of the associated affine vertex and W-algebras. In this volume, this general idea can be seen at work from several points of view. Most relevant state of the art topics are covered, including fusion, relationships with finite dimensional Lie theory, permutation orbifolds, higher Zhu algebras, connections with combinatorics, and mathematical physics. The volume is based on the INdAM Workshop Affine, Vertex and W-algebras, held in Rome from 11 to 15 December 2017. It will be of interest to all researchers in the field.

Algebraic Combinatorics and the Monster Group

Algebraic Combinatorics and the Monster Group PDF Author: Alexander A. Ivanov
Publisher: Cambridge University Press
ISBN: 1009338048
Category : Mathematics
Languages : en
Pages : 583

Book Description
The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.

Differential and Difference Equations with Applications

Differential and Difference Equations with Applications PDF Author: Sandra Pinelas
Publisher: Springer
ISBN: 3319756478
Category : Mathematics
Languages : en
Pages : 640

Book Description
This book gathers papers from the International Conference on Differential & Difference Equations and Applications 2017 (ICDDEA 2017), held in Lisbon, Portugal on June 5-9, 2017. The editors have compiled the strongest research presented at the conference, providing readers with valuable insights into new trends in the field, as well as applications and high-level survey results. The goal of the ICDDEA was to promote fruitful collaborations between researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with a special emphasis on applications.

Moonshine - The First Quarter Century and Beyond

Moonshine - The First Quarter Century and Beyond PDF Author: James Lepowsky
Publisher: Cambridge University Press
ISBN: 0521106648
Category : Mathematics
Languages : en
Pages : 415

Book Description
This volume examines the impact of the 'Monstrous Moonshine' paper on mathematics and theoretical physics.