Symmetric Functions, Schubert Polynomials and Degeneracy Loci PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Symmetric Functions, Schubert Polynomials and Degeneracy Loci PDF full book. Access full book title Symmetric Functions, Schubert Polynomials and Degeneracy Loci by Laurent Manivel. Download full books in PDF and EPUB format.

Symmetric Functions, Schubert Polynomials and Degeneracy Loci

Symmetric Functions, Schubert Polynomials and Degeneracy Loci PDF Author: Laurent Manivel
Publisher: American Mathematical Soc.
ISBN: 9780821821541
Category : Computers
Languages : en
Pages : 180

Book Description
This text grew out of an advanced course taught by the author at the Fourier Institute (Grenoble, France). It serves as an introduction to the combinatorics of symmetric functions, more precisely to Schur and Schubert polynomials. Also studied is the geometry of Grassmannians, flag varieties, and especially, their Schubert varieties. This book examines profound connections that unite these two subjects. The book is divided into three chapters. The first is devoted to symmetricfunctions and especially to Schur polynomials. These are polynomials with positive integer coefficients in which each of the monomials correspond to a Young tableau with the property of being ``semistandard''. The second chapter is devoted to Schubert polynomials, which were discovered by A. Lascoux andM.-P. Schutzenberger who deeply probed their combinatorial properties. It is shown, for example, that these polynomials support the subtle connections between problems of enumeration of reduced decompositions of permutations and the Littlewood-Richardson rule, a particularly efficacious version of which may be derived from these connections. The final chapter is geometric. It is devoted to Schubert varieties, subvarieties of Grassmannians, and flag varieties defined by certain incidenceconditions with fixed subspaces. This volume makes accessible a number of results, creating a solid stepping stone for scaling more ambitious heights in the area. The author's intent was to remain elementary: The first two chapters require no prior knowledge, the third chapter uses some rudimentary notionsof topology and algebraic geometry. For this reason, a comprehensive appendix on the topology of algebraic varieties is provided. This book is the English translation of a text previously published in French.

Symmetric Functions, Schubert Polynomials and Degeneracy Loci

Symmetric Functions, Schubert Polynomials and Degeneracy Loci PDF Author: Laurent Manivel
Publisher: American Mathematical Soc.
ISBN: 9780821821541
Category : Computers
Languages : en
Pages : 180

Book Description
This text grew out of an advanced course taught by the author at the Fourier Institute (Grenoble, France). It serves as an introduction to the combinatorics of symmetric functions, more precisely to Schur and Schubert polynomials. Also studied is the geometry of Grassmannians, flag varieties, and especially, their Schubert varieties. This book examines profound connections that unite these two subjects. The book is divided into three chapters. The first is devoted to symmetricfunctions and especially to Schur polynomials. These are polynomials with positive integer coefficients in which each of the monomials correspond to a Young tableau with the property of being ``semistandard''. The second chapter is devoted to Schubert polynomials, which were discovered by A. Lascoux andM.-P. Schutzenberger who deeply probed their combinatorial properties. It is shown, for example, that these polynomials support the subtle connections between problems of enumeration of reduced decompositions of permutations and the Littlewood-Richardson rule, a particularly efficacious version of which may be derived from these connections. The final chapter is geometric. It is devoted to Schubert varieties, subvarieties of Grassmannians, and flag varieties defined by certain incidenceconditions with fixed subspaces. This volume makes accessible a number of results, creating a solid stepping stone for scaling more ambitious heights in the area. The author's intent was to remain elementary: The first two chapters require no prior knowledge, the third chapter uses some rudimentary notionsof topology and algebraic geometry. For this reason, a comprehensive appendix on the topology of algebraic varieties is provided. This book is the English translation of a text previously published in French.

Symmetric Functions and Combinatorial Operators on Polynomials

Symmetric Functions and Combinatorial Operators on Polynomials PDF Author: Alain Lascoux
Publisher: American Mathematical Soc.
ISBN: 0821828711
Category : Mathematics
Languages : en
Pages : 282

Book Description
The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.

k-Schur Functions and Affine Schubert Calculus

k-Schur Functions and Affine Schubert Calculus PDF Author: Thomas Lam
Publisher: Springer
ISBN: 1493906828
Category : Mathematics
Languages : en
Pages : 226

Book Description
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field.

Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory PDF Author: Jianxun Hu
Publisher: Springer Nature
ISBN: 9811574510
Category : Mathematics
Languages : en
Pages : 367

Book Description
This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

Notes on Schubert Polynomials

Notes on Schubert Polynomials PDF Author: Ian Grant Macdonald
Publisher: Dép. de mathématique et d'informatique, Université du Québec à Montréal
ISBN:
Category : Mathematics
Languages : en
Pages : 138

Book Description


Selected Works of Richard P. Stanley

Selected Works of Richard P. Stanley PDF Author: Victor Reiner
Publisher: American Mathematical Soc.
ISBN: 1470416824
Category : Mathematics
Languages : en
Pages : 842

Book Description
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. Many of his hallmark ideas and techniques imported from other areas of mathematics have become mainstays in the framework of modern combinatorics. In addition to collecting several of Stanley's most influential papers, this volume also includes his own short reminiscences on his early years, and on his celebrated proof of The Upper Bound Theorem.

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics PDF Author: James Haglund
Publisher: American Mathematical Soc.
ISBN: 0821844113
Category : Mathematics
Languages : en
Pages : 178

Book Description
This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.

Young Tableaux

Young Tableaux PDF Author: William Fulton
Publisher: Cambridge University Press
ISBN: 9780521567244
Category : Mathematics
Languages : en
Pages : 276

Book Description
Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.

Combinatorics of Coxeter Groups

Combinatorics of Coxeter Groups PDF Author: Anders Bjorner
Publisher: Springer Science & Business Media
ISBN: 3540275967
Category : Mathematics
Languages : en
Pages : 371

Book Description
Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra PDF Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442

Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs