Author: Wai Kiu Chan
Publisher: American Mathematical Soc.
ISBN: 0821883186
Category : Mathematics
Languages : en
Pages : 259
Book Description
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms
Author: Wai Kiu Chan
Publisher: American Mathematical Soc.
ISBN: 0821883186
Category : Mathematics
Languages : en
Pages : 259
Book Description
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Publisher: American Mathematical Soc.
ISBN: 0821883186
Category : Mathematics
Languages : en
Pages : 259
Book Description
This volume contains the proceedings of the International Workshop on Diophantine Methods, Lattices, and Arithmetic Theory of Quadratic Forms. The articles cover the arithmetic theory of quadratic forms and lattices, as well as the effective Diophantine analysis with height functions.
Rational Number Theory in the 20th Century
Author: Władysław Narkiewicz
Publisher: Springer Science & Business Media
ISBN: 0857295322
Category : Mathematics
Languages : en
Pages : 659
Book Description
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.
Publisher: Springer Science & Business Media
ISBN: 0857295322
Category : Mathematics
Languages : en
Pages : 659
Book Description
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat’s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area.
Number Theory
Author: R.P. Bambah
Publisher: Birkhäuser
ISBN: 303487023X
Category : Mathematics
Languages : en
Pages : 525
Book Description
The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.
Publisher: Birkhäuser
ISBN: 303487023X
Category : Mathematics
Languages : en
Pages : 525
Book Description
The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.
Quadratic Forms and Their Applications
Author: Eva Bayer-Fluckiger
Publisher: American Mathematical Soc.
ISBN: 0821827790
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Publisher: American Mathematical Soc.
ISBN: 0821827790
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Rational Quadratic Forms
Author: J. W. S. Cassels
Publisher: Courier Dover Publications
ISBN: 0486466701
Category : Mathematics
Languages : en
Pages : 429
Book Description
Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.
Publisher: Courier Dover Publications
ISBN: 0486466701
Category : Mathematics
Languages : en
Pages : 429
Book Description
Exploration of quadratic forms over rational numbers and rational integers offers elementary introduction. Covers quadratic forms over local fields, forms with integral coefficients, reduction theory for definite forms, more. 1968 edition.
Geometry of Numbers
Author: C. G. Lekkerkerker
Publisher: Elsevier
ISBN: 1483259277
Category : Mathematics
Languages : en
Pages : 521
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume VIII: Geometry of Numbers focuses on bodies and lattices in the n-dimensional euclidean space. The text first discusses convex bodies and lattice points and the covering constant and inhomogeneous determinant of a set. Topics include the inhomogeneous determinant of a set, covering constant of a set, theorem of Minkowski-Hlawka, packing of convex bodies, successive minima and determinant of a set, successive minima of a convex body, extremal bodies, and polar reciprocal convex bodies. The publication ponders on star bodies, as well as points of critical lattices on the boundary, reducible, and irreducible star bodies and reduction of automorphic star bodies. The manuscript reviews homogeneous and inhomogeneous s forms and some methods. Discussions focus on asymmetric inequalities, inhomogeneous forms in more variables, indefinite binary quadratic forms, diophantine approximation, sums of powers of linear forms, spheres and quadratic forms, and a method of Blichfeldt and Mordell. The text is a dependable reference for researchers and mathematicians interested in bodies and lattices in the n-dimensional euclidean space.
Publisher: Elsevier
ISBN: 1483259277
Category : Mathematics
Languages : en
Pages : 521
Book Description
Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume VIII: Geometry of Numbers focuses on bodies and lattices in the n-dimensional euclidean space. The text first discusses convex bodies and lattice points and the covering constant and inhomogeneous determinant of a set. Topics include the inhomogeneous determinant of a set, covering constant of a set, theorem of Minkowski-Hlawka, packing of convex bodies, successive minima and determinant of a set, successive minima of a convex body, extremal bodies, and polar reciprocal convex bodies. The publication ponders on star bodies, as well as points of critical lattices on the boundary, reducible, and irreducible star bodies and reduction of automorphic star bodies. The manuscript reviews homogeneous and inhomogeneous s forms and some methods. Discussions focus on asymmetric inequalities, inhomogeneous forms in more variables, indefinite binary quadratic forms, diophantine approximation, sums of powers of linear forms, spheres and quadratic forms, and a method of Blichfeldt and Mordell. The text is a dependable reference for researchers and mathematicians interested in bodies and lattices in the n-dimensional euclidean space.
Reviews in Number Theory, as Printed in Mathematical Reviews, 1940 Through 1972, Volumes 1-44 Inclusive
Author: William Judson LeVeque
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 388
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 388
Book Description
Quaternion Algebras
Author: John Voight
Publisher: Springer Nature
ISBN: 3030566943
Category : Mathematics
Languages : en
Pages : 877
Book Description
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Publisher: Springer Nature
ISBN: 3030566943
Category : Mathematics
Languages : en
Pages : 877
Book Description
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Acta arithmetica
Semidefinite Optimization and Convex Algebraic Geometry
Author: Grigoriy Blekherman
Publisher: SIAM
ISBN: 1611972280
Category : Mathematics
Languages : en
Pages : 487
Book Description
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Publisher: SIAM
ISBN: 1611972280
Category : Mathematics
Languages : en
Pages : 487
Book Description
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.