Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System PDF full book. Access full book title Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System by Hans Jakob Belter. Download full books in PDF and EPUB format.

Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System

Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System PDF Author: Hans Jakob Belter
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Arctic sea ice cover is strongly connected to the global climate system and therefore not only subject to internal variability but also in a phase of significant change related to the ongoing increase in global mean surface temperatures. The most important parameters to monitor and describe sea ice are its areal extent, thickness, and motion. While reliable, long-term satellite measurements of sea ice concentration, which is used to derive the area covered by sea ice, exist since the late 1970s, sea ice thickness and motion data sets of comparable quality and length are currently not available. The overarching goal of this dissertation is to contribute to the improvement of sea ice thickness observations and to understand and quantify the impact of ongoing sea ice thickness changes and variability in the most important regions of sea ice formation on the overall Arctic sea ice budget. To achieve that, the first study presented in this dissertation focuses on extending the knowledge about sea ice thickness variability in the Laptev Sea by developing a new method to derive sea ice thickness time series from moored sonars. It is shown that daily mean sea ice thickness time series can be inferred from basic, moored upward-looking Acoustic Doppler Current Profilers. This adaptive approach allows to revisit data sets from past mooring deployments in the Laptev Sea and exploit them to extend the available sea ice thickness records and close observational gaps in a region that, due to its limited accessibility, is vastly under-sampled. These new data sets are the basis for the validation of multiple satellite sea ice thickness products, including the longest available one introduced by the European Space Agency, which provides Arctic-wide sea ice thickness since 2002. It is shown that in the first-year ice dominated Laptev Sea the investigated satellite products provide the most frequently occurring (modal) rather than the mean sea ice thickness. This important discovery allows for a better interpretation of the available satellite records, especially for the investigation of sea ice volume transports, and underlines their deficiencies in representing dynamically deformed sea ice. Based on the knowledge gained in the Laptev Sea, the final study presented in this dissertation follows the Arctic sea ice life cycle from the regions of ice formation along the Transpolar Drift towards Fram Strait and analyses whether sea ice thickness anomalies induced in the source regions of Arctic sea ice propagate to the central Arctic Ocean and beyond. More specifically, it is investigated which particular processes are potentially responsible for the induced anomalies in the source regions and whether their signals persist until the end of the Transpolar Drift. In the absence of a single-source Arctic-wide, high temporal and spatial resolution sea ice thickness data product, this final part promotes the combination of different techniques and tools for the investigation of this complex Arctic climate parameter. At the center of the investigation is an extended long-term electromagnetic induction sounding-based sea ice thickness time series, which shows a general thinning and decreasing age of sea ice at the end of the Transpolar Drift between 2001 and 2020. Due to its length, this unique time series also permits to put ice thickness measurements conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition into the historical context. Lagrangian ice tracking and modelling of thermodynamic sea ice growth along the pathways of Arctic sea ice reveal a potential preconditioning effect of observed increases in upward ocean heat fluxes in the eastern Arctic, termed Atlantification, that decelerates sea ice growth. The presented efforts are an important contribution to the better understanding of Arctic sea ice thickness variability and change and can be seen as starting points for more targeted analyses of the driving mechanisms behind them. In addition, the acquisition, validation, and extension of sea ice thickness observations provide the basis for more detailed sea ice modelling, which will improve not only the monitoring but also the prediction of Arctic sea ice thickness changes in the future.

Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System

Observing Sea Ice Thickness Variability in the Laptev Sea and the Implications for the Transpolar Drift System PDF Author: Hans Jakob Belter
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Arctic sea ice cover is strongly connected to the global climate system and therefore not only subject to internal variability but also in a phase of significant change related to the ongoing increase in global mean surface temperatures. The most important parameters to monitor and describe sea ice are its areal extent, thickness, and motion. While reliable, long-term satellite measurements of sea ice concentration, which is used to derive the area covered by sea ice, exist since the late 1970s, sea ice thickness and motion data sets of comparable quality and length are currently not available. The overarching goal of this dissertation is to contribute to the improvement of sea ice thickness observations and to understand and quantify the impact of ongoing sea ice thickness changes and variability in the most important regions of sea ice formation on the overall Arctic sea ice budget. To achieve that, the first study presented in this dissertation focuses on extending the knowledge about sea ice thickness variability in the Laptev Sea by developing a new method to derive sea ice thickness time series from moored sonars. It is shown that daily mean sea ice thickness time series can be inferred from basic, moored upward-looking Acoustic Doppler Current Profilers. This adaptive approach allows to revisit data sets from past mooring deployments in the Laptev Sea and exploit them to extend the available sea ice thickness records and close observational gaps in a region that, due to its limited accessibility, is vastly under-sampled. These new data sets are the basis for the validation of multiple satellite sea ice thickness products, including the longest available one introduced by the European Space Agency, which provides Arctic-wide sea ice thickness since 2002. It is shown that in the first-year ice dominated Laptev Sea the investigated satellite products provide the most frequently occurring (modal) rather than the mean sea ice thickness. This important discovery allows for a better interpretation of the available satellite records, especially for the investigation of sea ice volume transports, and underlines their deficiencies in representing dynamically deformed sea ice. Based on the knowledge gained in the Laptev Sea, the final study presented in this dissertation follows the Arctic sea ice life cycle from the regions of ice formation along the Transpolar Drift towards Fram Strait and analyses whether sea ice thickness anomalies induced in the source regions of Arctic sea ice propagate to the central Arctic Ocean and beyond. More specifically, it is investigated which particular processes are potentially responsible for the induced anomalies in the source regions and whether their signals persist until the end of the Transpolar Drift. In the absence of a single-source Arctic-wide, high temporal and spatial resolution sea ice thickness data product, this final part promotes the combination of different techniques and tools for the investigation of this complex Arctic climate parameter. At the center of the investigation is an extended long-term electromagnetic induction sounding-based sea ice thickness time series, which shows a general thinning and decreasing age of sea ice at the end of the Transpolar Drift between 2001 and 2020. Due to its length, this unique time series also permits to put ice thickness measurements conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition into the historical context. Lagrangian ice tracking and modelling of thermodynamic sea ice growth along the pathways of Arctic sea ice reveal a potential preconditioning effect of observed increases in upward ocean heat fluxes in the eastern Arctic, termed Atlantification, that decelerates sea ice growth. The presented efforts are an important contribution to the better understanding of Arctic sea ice thickness variability and change and can be seen as starting points for more targeted analyses of the driving mechanisms behind them. In addition, the acquisition, validation, and extension of sea ice thickness observations provide the basis for more detailed sea ice modelling, which will improve not only the monitoring but also the prediction of Arctic sea ice thickness changes in the future.

The Drift of Sea Ice

The Drift of Sea Ice PDF Author: Matti Leppäranta
Publisher: Springer Science & Business Media
ISBN: 3540269703
Category : Science
Languages : en
Pages : 282

Book Description
This book presents the fundamental laws of sea ice drift, as derived from the material properties of sea ice, the basic laws of mechanics, and the latest modeling techniques. Topics covered include the science of sea ice drift, forecasting velocity based on volume, size and shape, sea ice ridging and remote sensing, modelling of ice conditions, and the role of sea ice drift in oceanography, marine ecology and engineering.

Arctic Sea Ice Dynamics

Arctic Sea Ice Dynamics PDF Author: Torge Martin
Publisher:
ISBN:
Category : Sea ice
Languages : en
Pages : 254

Book Description


The Drift of Sea Ice

The Drift of Sea Ice PDF Author: Matti Leppäranta
Publisher: Springer Science & Business Media
ISBN: 3642046835
Category : Science
Languages : en
Pages : 370

Book Description
The Second Edition of The Drift of Sea Ice presents the fundamental laws of sea ice drift which come from the material properties of sea ice and the basic laws of mechanics. The resulting system of equations is analysed for the general properties of sea ice drift, the free drift model and analytical models for ice drift in the presence of internal friction, and the construction of numerical ice drift models is detailed. This second edition of a much lauded work, unique on this topic in the English language, has been revised, updated and expanded with much new information and outlines recent results, in particular in relation to the climate problem, mathematical modelling and ice engineering applications. The current book presents the theory, observations, mathematical modelling techniques, and applications of sea ice drift science. The theory is presented from the beginning on a graduate student level, so that students and researchers coming from other fields such as physical oceanography, meteorology, physics, engineering, environmental sciences or geography can use the book as a source book or self-study material. First the drift ice material is presented ending with the concept of ‘ice state’ – the relevant properties in sea ice dynamics. Ice kinematics observations are widely presented with the mathematical analysis methods, and thereafter come drift ice rheology – to close the triangle material – kinematics – stress. The momentum equation of sea ice is derived in detail and its general properties are carefully analysed. Then follow two chapters on analytical models: free drift and drift in the presence of internal friction: These are very important tools in understanding the dynamical behaviour of sea ice. The last topical chapter is numerical models, which are the modern tool to solve ice dynamics problem in short term and long term problems. The closing chapter summarises sea ice dynamics applications and the need of sea ice dynamic knowledge and gives some final remarks on the future of this branch of science.

Arctic and Antarctic Sea Ice, 1978-1987

Arctic and Antarctic Sea Ice, 1978-1987 PDF Author: Per Gloersen
Publisher:
ISBN:
Category : Microwave remote sensing
Languages : en
Pages : 324

Book Description


Arctic-Subarctic Ocean Fluxes

Arctic-Subarctic Ocean Fluxes PDF Author: Robert R. Dickson
Publisher: Springer Science & Business Media
ISBN: 1402067747
Category : Science
Languages : en
Pages : 728

Book Description
We are only now beginning to understand the climatic impact of the remarkable events that are now occurring in subarctic waters. Researchers, however, have yet to agree upon a predictive model that links change in our northern seas to climate. This volume brings together the body of evidence needed to develop climate models that quantify the ocean exchanges through subarctic seas, measure their variability, and gauge their impact on climate.

Observations, Interactions, and Implications of Increasingly Dynamic Permafrost Coastal Systems

Observations, Interactions, and Implications of Increasingly Dynamic Permafrost Coastal Systems PDF Author: Benjamin M. Jones
Publisher: Frontiers Media SA
ISBN: 2889760243
Category : Science
Languages : en
Pages : 255

Book Description


Understanding Recent Variability in the Arctic Sea Ice Cover - Synthesis of Model Results and Observations

Understanding Recent Variability in the Arctic Sea Ice Cover - Synthesis of Model Results and Observations PDF Author:
Publisher:
ISBN:
Category : Arctic regions
Languages : en
Pages : 67

Book Description
This thesis provides a continuation of the analysis of the diminishing sea ice trend in the Arctic Ocean by examining results from the NPS 1/12 degree pan-Arctic coupled ice-ocean model. While many previous studies have analyzed changes in ice extent and concentration, this research focuses on ice thickness as it gives a better representation of ice volume variability. The skill of the model is examined by comparing its ice thickness output to actual sea ice thickness data gathered during the last three decades. The model comparison is made against the most recently released collection of Arctic ice draft measurements conducted by U.S. Navy submarines between 1979 and 2000. The NPS model indicates an accelerated thinning trend in Arctic sea ice during the last decade. The validation of model output with submarine upward-looking sonar data supports this result. This lends credence to the postulation that the Arctic is likely to be ice-free during the summer in the near future. The diminishing Arctic sea ice will have significant implications for both the physical and operational environment in which the U.S. Navy currently operates.

Drift, Deformation, and Fracture of Sea Ice

Drift, Deformation, and Fracture of Sea Ice PDF Author: Jerome Weiss
Publisher: Springer Science & Business Media
ISBN: 940076202X
Category : Science
Languages : en
Pages : 95

Book Description
Sea ice is a major component of polar environments, especially in the Arctic where it covers the entire Arctic Ocean throughout most of the year. However, in the context of climate change, the Arctic sea ice cover has been declining significantly over the last decades, either in terms of its concentration or thickness. The sea ice cover evolution and climate change are strongly coupled through the albedo positive feedback, thus possibly explaining the Arctic amplification of climate warming. In addition to thermodynamics, sea ice kinematics (drift, deformation) appears as an essential factor in the evolution of the ice cover through a reduction of the average ice age (and consequently of the cover's thickness), or ice export out of the Arctic. This is a first motivation for a better understanding of the kinematical and mechanical processes of sea ice. A more upstream, theoretical motivation is a better understanding of the brittle deformation of geophysical objects across a wide range of scales. Indeed, owing to its very strong kinematics, compared e.g. to the Earth’s crust, an unrivaled kinematical data set is available for sea ice from in situ (e.g. drifting buoys) or satellite observations. Here, we review the recent advances in the understanding of sea ice drift, deformation and fracturing obtained from these data. We focus particularly on the scaling properties in time and scale that characterize these processes, and we emphasize the analogies that can be drawn from the deformation of the Earth’s crust. These scaling properties, which are the signature of long-range elastic interactions within the cover, constrain future developments in the modeling of sea ice mechanics. We also show that kinematical and rheological variables such as average velocity, average strain-rate or strength have significantly changed over the last decades, accompanying and actually accelerating the Arctic sea ice decline.

Sea Ice

Sea Ice PDF Author: David N. Thomas
Publisher: John Wiley & Sons
ISBN: 1118778383
Category : Science
Languages : en
Pages : 666

Book Description
Over the past 20 years the study of the frozen Arctic and Southern Oceans and sub-arctic seas has progressed at a remarkable pace. This third edition of Sea Ice gives insight into the very latest understanding of the how sea ice is formed, how we measure (and model) its extent, the biology that lives within and associated with sea ice and the effect of climate change on its distribution. How sea ice influences the oceanography of underlying waters and the influences that sea ice has on humans living in Arctic regions are also discussed. Featuring twelve new chapters, this edition follows two previous editions (2001 and 2010), and the need for this latest update exhibits just how rapidly the science of sea ice is developing. The 27 chapters are written by a team of more than 50 of the worlds’ leading experts in their fields. These combine to make the book the most comprehensive introduction to the physics, chemistry, biology and geology of sea ice that there is. This third edition of Sea Ice will be a key resource for all policy makers, researchers and students who work with the frozen oceans and seas.