Numerical Methods for Nonlinear Partial Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Methods for Nonlinear Partial Differential Equations PDF full book. Access full book title Numerical Methods for Nonlinear Partial Differential Equations by Sören Bartels. Download full books in PDF and EPUB format.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations PDF Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394

Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations PDF Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394

Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Numerical Solutions of Nonlinear Differential Equations

Numerical Solutions of Nonlinear Differential Equations PDF Author: Donald Greenspan
Publisher:
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages : 368

Book Description


Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: L.F. Shampine
Publisher: Routledge
ISBN: 1351427555
Category : Mathematics
Languages : en
Pages : 632

Book Description
This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations

Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations PDF Author: Sujaul Chowdhury
Publisher: Chapman & Hall/CRC
ISBN: 9781003204916
Category : Mathematics
Languages : en
Pages : 102

Book Description
The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton's iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.

Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations

Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations PDF Author: Sujaul Chowdhury
Publisher: CRC Press
ISBN: 1000486117
Category : Mathematics
Languages : en
Pages : 112

Book Description
The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton’s iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.

Nonlinear Ordinary Differential Equations

Nonlinear Ordinary Differential Equations PDF Author: Martin Hermann
Publisher: Springer
ISBN: 813222812X
Category : Mathematics
Languages : en
Pages : 320

Book Description
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica PDF Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372

Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

Numerical Solutions of Nonlinear Differential Equations

Numerical Solutions of Nonlinear Differential Equations PDF Author: Donald Greenspan
Publisher:
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages : 347

Book Description


Numerical Solution of Nonlinear Boundary Value Problems with Applications

Numerical Solution of Nonlinear Boundary Value Problems with Applications PDF Author: Milan Kubicek
Publisher: Courier Corporation
ISBN: 0486463001
Category : Mathematics
Languages : en
Pages : 338

Book Description
A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.

Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models PDF Author: John R. Hauser
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013

Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.