Author: Karl E. Gustafson
Publisher: Springer Science & Business Media
ISBN: 1461384982
Category : Mathematics
Languages : en
Pages : 202
Book Description
The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plane covered by those values for an n x n matrix T, then the range of values of a Hermitian matrix, then the field of values when he analyzed what he called the sought-for region.
Numerical Range
Author: Karl E. Gustafson
Publisher: Springer Science & Business Media
ISBN: 1461384982
Category : Mathematics
Languages : en
Pages : 202
Book Description
The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plane covered by those values for an n x n matrix T, then the range of values of a Hermitian matrix, then the field of values when he analyzed what he called the sought-for region.
Publisher: Springer Science & Business Media
ISBN: 1461384982
Category : Mathematics
Languages : en
Pages : 202
Book Description
The theories of quadratic forms and their applications appear in many parts of mathematics and the sciences. All students of mathematics have the opportunity to encounter such concepts and applications in their first course in linear algebra. This subject and its extensions to infinite dimen sions comprise the theory of the numerical range W(T). There are two competing names for W(T), namely, the numerical range of T and the field of values for T. The former has been favored historically by the func tional analysis community, the latter by the matrix analysis community. It is a toss-up to decide which is preferable, and we have finally chosen the former because it is our habit, it is a more efficient expression, and because in recent conferences dedicated to W(T), even the linear algebra commu nity has adopted it. Also, one universally refers to the numerical radius, and not to the field of values radius. Originally, Toeplitz and Hausdorff called it the Wertvorrat of a bilinear form, so other good names would be value field or form values. The Russian community has referred to it as the Hausdorff domain. Murnaghan in his early paper first called it the region of the complex plane covered by those values for an n x n matrix T, then the range of values of a Hermitian matrix, then the field of values when he analyzed what he called the sought-for region.
Numerical Ranges of Hilbert Space Operators
Author: Hwa-Long Gau
Publisher: Cambridge University Press
ISBN: 1108787606
Category : Mathematics
Languages : en
Pages : 556
Book Description
Starting with elementary operator theory and matrix analysis, this book introduces the basic properties of the numerical range and gradually builds up the whole numerical range theory. Over 400 assorted problems, ranging from routine exercises to published research results, give you the chance to put the theory into practice and test your understanding. Interspersed throughout the text are numerous comments and references, allowing you to discover related developments and to pursue areas of interest in the literature. Also included is an appendix on basic convexity properties on the Euclidean space. Targeted at graduate students as well as researchers interested in functional analysis, this book provides a comprehensive coverage of classic and recent works on the numerical range theory. It serves as an accessible entry point into this lively and exciting research area.
Publisher: Cambridge University Press
ISBN: 1108787606
Category : Mathematics
Languages : en
Pages : 556
Book Description
Starting with elementary operator theory and matrix analysis, this book introduces the basic properties of the numerical range and gradually builds up the whole numerical range theory. Over 400 assorted problems, ranging from routine exercises to published research results, give you the chance to put the theory into practice and test your understanding. Interspersed throughout the text are numerous comments and references, allowing you to discover related developments and to pursue areas of interest in the literature. Also included is an appendix on basic convexity properties on the Euclidean space. Targeted at graduate students as well as researchers interested in functional analysis, this book provides a comprehensive coverage of classic and recent works on the numerical range theory. It serves as an accessible entry point into this lively and exciting research area.
Finding Ellipses: What Blaschke Products, Poncelet’s Theorem, and the Numerical Range Know about Each Other
Author: Ulrich Daepp
Publisher: American Mathematical Soc.
ISBN: 147044383X
Category : Mathematics
Languages : en
Pages : 282
Book Description
Mathematicians delight in finding surprising connections between seemingly disparate areas of mathematics. Finding Ellipses is a delight-filled romp across a three-way unexpected connection between complex analysis, linear algebra, and projective geometry.
Publisher: American Mathematical Soc.
ISBN: 147044383X
Category : Mathematics
Languages : en
Pages : 282
Book Description
Mathematicians delight in finding surprising connections between seemingly disparate areas of mathematics. Finding Ellipses is a delight-filled romp across a three-way unexpected connection between complex analysis, linear algebra, and projective geometry.
Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras
Author: F. F. Bonsall
Publisher: CUP Archive
ISBN: 0521079888
Category : Mathematics
Languages : en
Pages : 149
Book Description
The authors develop various applications, in particular to the study of Banach algebras where the numerical range provides an important link between the algebraic and metric structures.
Publisher: CUP Archive
ISBN: 0521079888
Category : Mathematics
Languages : en
Pages : 149
Book Description
The authors develop various applications, in particular to the study of Banach algebras where the numerical range provides an important link between the algebraic and metric structures.
Numerical Range of Holomorphic Mappings and Applications
Author: Mark Elin
Publisher: Springer
ISBN: 3030050203
Category : Mathematics
Languages : en
Pages : 238
Book Description
This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.
Publisher: Springer
ISBN: 3030050203
Category : Mathematics
Languages : en
Pages : 238
Book Description
This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.
Many-Sorted Algebras for Deep Learning and Quantum Technology
Author: Charles R. Giardina
Publisher: Elsevier
ISBN: 044313698X
Category : Science
Languages : en
Pages : 423
Book Description
Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous description of basic concepts in Quantum technologies and how they relate to Deep Learning and Quantum Theory. Current merging of Quantum Theory and Deep Learning techniques provides a need for a text that can give readers insight into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread. This thread is exposed using Many-Sorted Algebras (MSA). In almost every aspect of Quantum Theory as well as Deep Learning more than one sort or type of object is involved. For instance, in Quantum areas Hilbert spaces require two sorts, while in affine spaces, three sorts are needed. Both a global level and a local level of precise specification is described using MSA. At a local level operation involving neural nets may appear to be very algebraically different than those used in Quantum systems, but at a global level they may be identical. Again, MSA is well equipped to easily detail their equivalence through text as well as visual diagrams. Among the reasons for using MSA is in illustrating this sameness. Author Charles R. Giardina includes hundreds of well-designed examples in the text to illustrate the intriguing concepts in Quantum systems. Along with these examples are numerous visual displays. In particular, the Polyadic Graph shows the types or sorts of objects used in Quantum or Deep Learning. It also illustrates all the inter and intra sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the text, all laws or equational identities needed in specifying an algebraic structure are precisely described. - Includes hundreds of well-designed examples to illustrate the intriguing concepts in quantum systems - Provides precise description of all laws or equational identities that are needed in specifying an algebraic structure - Illustrates all the inter and intra sort operations needed in describing algebras
Publisher: Elsevier
ISBN: 044313698X
Category : Science
Languages : en
Pages : 423
Book Description
Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous description of basic concepts in Quantum technologies and how they relate to Deep Learning and Quantum Theory. Current merging of Quantum Theory and Deep Learning techniques provides a need for a text that can give readers insight into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread. This thread is exposed using Many-Sorted Algebras (MSA). In almost every aspect of Quantum Theory as well as Deep Learning more than one sort or type of object is involved. For instance, in Quantum areas Hilbert spaces require two sorts, while in affine spaces, three sorts are needed. Both a global level and a local level of precise specification is described using MSA. At a local level operation involving neural nets may appear to be very algebraically different than those used in Quantum systems, but at a global level they may be identical. Again, MSA is well equipped to easily detail their equivalence through text as well as visual diagrams. Among the reasons for using MSA is in illustrating this sameness. Author Charles R. Giardina includes hundreds of well-designed examples in the text to illustrate the intriguing concepts in Quantum systems. Along with these examples are numerous visual displays. In particular, the Polyadic Graph shows the types or sorts of objects used in Quantum or Deep Learning. It also illustrates all the inter and intra sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the text, all laws or equational identities needed in specifying an algebraic structure are precisely described. - Includes hundreds of well-designed examples to illustrate the intriguing concepts in quantum systems - Provides precise description of all laws or equational identities that are needed in specifying an algebraic structure - Illustrates all the inter and intra sort operations needed in describing algebras
Spectral Theory of Block Operator Matrices and Applications
Author: Christiane Tretter
Publisher: Imperial College Press
ISBN: 1848161123
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book presents a wide panorama of methods to investigate the spectral properties of block operator matrices. Particular emphasis is placed on classes of block operator matrices to which standard operator theoretical methods do not readily apply: non-self-adjoint block operator matrices, block operator matrices with unbounded entries, non-semibounded block operator matrices, and classes of block operator matrices arising in mathematical physics.The main topics include: localization of the spectrum by means of new concepts of numerical range; investigation of the essential spectrum; variational principles and eigenvalue estimates; block diagonalization and invariant subspaces; solutions of algebraic Riccati equations; applications to spectral problems from magnetohydrodynamics, fluid mechanics, and quantum mechanics.
Publisher: Imperial College Press
ISBN: 1848161123
Category : Mathematics
Languages : en
Pages : 297
Book Description
This book presents a wide panorama of methods to investigate the spectral properties of block operator matrices. Particular emphasis is placed on classes of block operator matrices to which standard operator theoretical methods do not readily apply: non-self-adjoint block operator matrices, block operator matrices with unbounded entries, non-semibounded block operator matrices, and classes of block operator matrices arising in mathematical physics.The main topics include: localization of the spectrum by means of new concepts of numerical range; investigation of the essential spectrum; variational principles and eigenvalue estimates; block diagonalization and invariant subspaces; solutions of algebraic Riccati equations; applications to spectral problems from magnetohydrodynamics, fluid mechanics, and quantum mechanics.
Transition And Turbulence Control
Author: Mohamed Gad-el-hak
Publisher: World Scientific
ISBN: 9814479489
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This volume contains articles based on lectures given at the Workshop on Transition and Turbulence Control, hosted by the Institute for Mathematical Sciences, National University of Singapore, 8-10 December 2004. The lecturers included 13 of the world's foremost experts in the control of transitioning and turbulent flows. The chapters cover a wide range of subjects in the broad area of flow control, and will be useful to researchers working in this area in academia, government laboratories and industry. The coverage includes control theory, passive, active and reactive methods for controlling transitional and turbulent wall-bounded flows, noise suppression and mixing enhancement of supersonic turbulent jets, compliant coatings, modern flow diagnostic systems, and swept wing instabilities.
Publisher: World Scientific
ISBN: 9814479489
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
This volume contains articles based on lectures given at the Workshop on Transition and Turbulence Control, hosted by the Institute for Mathematical Sciences, National University of Singapore, 8-10 December 2004. The lecturers included 13 of the world's foremost experts in the control of transitioning and turbulent flows. The chapters cover a wide range of subjects in the broad area of flow control, and will be useful to researchers working in this area in academia, government laboratories and industry. The coverage includes control theory, passive, active and reactive methods for controlling transitional and turbulent wall-bounded flows, noise suppression and mixing enhancement of supersonic turbulent jets, compliant coatings, modern flow diagnostic systems, and swept wing instabilities.
Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561
Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras
Author: Theodore W. Palmer
Publisher: Cambridge University Press
ISBN: 9780521366373
Category : Mathematics
Languages : en
Pages : 820
Book Description
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.
Publisher: Cambridge University Press
ISBN: 9780521366373
Category : Mathematics
Languages : en
Pages : 820
Book Description
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.