Numerical Methods for Stiff Equations and Singular Perturbation Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Methods for Stiff Equations and Singular Perturbation Problems PDF full book. Access full book title Numerical Methods for Stiff Equations and Singular Perturbation Problems by A. Miranker. Download full books in PDF and EPUB format.

Numerical Methods for Stiff Equations and Singular Perturbation Problems

Numerical Methods for Stiff Equations and Singular Perturbation Problems PDF Author: A. Miranker
Publisher: Springer Science & Business Media
ISBN: 9781402002984
Category : Computers
Languages : en
Pages : 224

Book Description
Approach your problems from It isn't that they can't see the the right end and begin with the solution. It is that they can't see the problem. answers. Then, one day, perhaps you will find the final question. The Hermit Clad in Crane Feathers' G. K. Chesterton, The scandal of in R. Van Gulik's The Chinese Maze Father Brown "The point ofa pin" Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Numerical Methods for Stiff Equations and Singular Perturbation Problems

Numerical Methods for Stiff Equations and Singular Perturbation Problems PDF Author: A. Miranker
Publisher: Springer Science & Business Media
ISBN: 9781402002984
Category : Computers
Languages : en
Pages : 224

Book Description
Approach your problems from It isn't that they can't see the the right end and begin with the solution. It is that they can't see the problem. answers. Then, one day, perhaps you will find the final question. The Hermit Clad in Crane Feathers' G. K. Chesterton, The scandal of in R. Van Gulik's The Chinese Maze Father Brown "The point ofa pin" Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces.

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662099470
Category : Mathematics
Languages : en
Pages : 615

Book Description
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

Haar Wavelets

Haar Wavelets PDF Author: Ülo Lepik
Publisher: Springer Science & Business Media
ISBN: 3319042955
Category : Technology & Engineering
Languages : en
Pages : 209

Book Description
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.

Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 354078862X
Category : Mathematics
Languages : en
Pages : 541

Book Description
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.

Numerical Methods for Delay Differential Equations

Numerical Methods for Delay Differential Equations PDF Author: Alfredo Bellen
Publisher: OUP Oxford
ISBN: 0191523135
Category : Mathematics
Languages : en
Pages : 410

Book Description
The main purpose of the book is to introduce the readers to the numerical integration of the Cauchy problem for delay differential equations (DDEs). Peculiarities and differences that DDEs exhibit with respect to ordinary differential equations are preliminarily outlined by numerous examples illustrating some unexpected, and often surprising, behaviours of the analytical and numerical solutions. The effect of various kinds of delays on the regularity of the solution is described and some essential existence and uniqueness results are reported. The book is centered on the use of Runge-Kutta methods continuously extended by polynomial interpolation, includes a brief review of the various approaches existing in the literature, and develops an exhaustive error and well-posedness analysis for the general classes of one-step and multistep methods. The book presents a comprehensive development of continuous extensions of Runge-Kutta methods which are of interest also in the numerical treatment of more general problems such as dense output, discontinuous equations, etc. Some deeper insight into convergence and superconvergence of continuous Runge-Kutta methods is carried out for DDEs with various kinds of delays. The stepsize control mechanism is also developed on a firm mathematical basis relying on the discrete and continuous local error estimates. Classical results and a unconventional analysis of "stability with respect to forcing term" is reviewed for ordinary differential equations in view of the subsequent numerical stability analysis. Moreover, an exhaustive description of stability domains for some test DDEs is carried out and the corresponding stability requirements for the numerical methods are assessed and investigated. Alternative approaches, based on suitable formulation of DDEs as partial differential equations and subsequent semidiscretization are briefly described and compared with the classical approach. A list of available codes is provided, and illustrative examples, pseudo-codes and numerical experiments are included throughout the book.

Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations PDF Author: Ronald E. Mickens
Publisher: World Scientific
ISBN: 9810214588
Category : Mathematics
Languages : en
Pages : 264

Book Description
This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620

Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities

Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities PDF Author: Zi Cai Li
Publisher: Springer Science & Business Media
ISBN: 1461333385
Category : Mathematics
Languages : en
Pages : 488

Book Description
In this book the author sets out to answer two important questions: 1. Which numerical methods may be combined together? 2. How can different numerical methods be matched together? In doing so the author presents a number of useful combinations, for instance, the combination of various FEMs, the combinations of FEM-FDM, REM-FEM, RGM-FDM, etc. The combined methods have many advantages over single methods: high accuracy of solutions, less CPU time, less computer storage, easy coupling with singularities as well as the complicated boundary conditions. Since coupling techniques are essential to combinations, various matching strategies among different methods are carefully discussed. The author provides the matching rules so that optimal convergence, even superconvergence, and optimal stability can be achieved, and also warns of the matching pitfalls to avoid. Audience: The book is intended for both mathematicians and engineers and may be used as text for advanced students.

Nonlinear Systems, Vol. 1

Nonlinear Systems, Vol. 1 PDF Author: Victoriano Carmona
Publisher: Springer
ISBN: 3319667661
Category : Science
Languages : en
Pages : 428

Book Description
This book is part of a two volume set which presents the analysis of nonlinear phenomena as a long-standing challenge for research in basic and applied science as well as engineering. It discusses nonlinear differential and differential equations, bifurcation theory for periodic orbits and global connections. The integrability and reversibility of planar vector fields and theoretical analysis of classic physical models are sketched. This first volume concentrates on the mathematical theory and computational techniques that are essential for the study of nonlinear science, a second volume deals with real-world nonlinear phenomena in condensed matter, biology and optics.

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations PDF Author: Zhilin Li
Publisher: Cambridge University Press
ISBN: 1107163226
Category : Mathematics
Languages : en
Pages : 305

Book Description
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.