Numerical Methods and Computational Sciences Applied to Nuclear Energy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Methods and Computational Sciences Applied to Nuclear Energy PDF full book. Access full book title Numerical Methods and Computational Sciences Applied to Nuclear Energy by Yue Jin. Download full books in PDF and EPUB format.

Numerical Methods and Computational Sciences Applied to Nuclear Energy

Numerical Methods and Computational Sciences Applied to Nuclear Energy PDF Author: Yue Jin
Publisher: Frontiers Media SA
ISBN: 283250518X
Category : Technology & Engineering
Languages : en
Pages : 153

Book Description


Numerical Methods and Computational Sciences Applied to Nuclear Energy

Numerical Methods and Computational Sciences Applied to Nuclear Energy PDF Author: Yue Jin
Publisher: Frontiers Media SA
ISBN: 283250518X
Category : Technology & Engineering
Languages : en
Pages : 153

Book Description


Computational Nuclear Physics 2

Computational Nuclear Physics 2 PDF Author: K. Langanke
Publisher: Springer Science & Business Media
ISBN: 1461393353
Category : Science
Languages : en
Pages : 216

Book Description
Computation is essential to our modern understanding of nuclear systems. Although simple analytical models might guide our intuition, the complex ity of the nuclear many-body problem and the ever-increasing precision of experimental results require large-scale numerical studies for a quantitative understanding. Despite their importance, many nuclear physics computations remain something of a black art. A practicing nuclear physicist might be familiar with one or another type of computation, but there is no way to systemati cally acquire broad experience. Although computational methods and results are often presented in the literature, it is often difficult to obtain the working codes. More often than not, particular numerical expertise resides in one or a few individuals, who must be contacted informally to generate results; this option becomes unavailable when these individuals leave the field. And while the teaching of modern nuclear physics can benefit enormously from realistic computer simulations, there has been no source for much of the important material. The present volume, the second of two, is an experiment aimed at address ing some of these problems. We have asked recognized experts in various aspects of computational nuclear physics to codify their expertise in indi vidual chapters. Each chapter takes the form of a brief description of the relevant physics (with appropriate references to the literature), followed by a discussion of the numerical methods used and their embodiment in a FOR TRAN code. The chapters also contain sample input and test runs, as well as suggestions for further exploration.

Fractional Calculus with Applications for Nuclear Reactor Dynamics

Fractional Calculus with Applications for Nuclear Reactor Dynamics PDF Author: Santanu Saha Ray
Publisher: CRC Press
ISBN: 149872728X
Category : Mathematics
Languages : en
Pages : 232

Book Description
Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous way

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation PDF Author: Liangzhi Cao
Publisher: Woodhead Publishing
ISBN: 0128182229
Category : Technology & Engineering
Languages : en
Pages : 294

Book Description
Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings. Combines the theoretical models with numerical methods and results in one complete resource Presents the latest progress on the topic in an easy-to-navigate format

Computational Nuclear Physics 2

Computational Nuclear Physics 2 PDF Author: Karlheinz Langanke
Publisher: Springer
ISBN: 9780387979540
Category : Science
Languages : en
Pages : 203

Book Description
Computation is essential to our modern understanding of nuclear systems. Although simple analytical models might guide our intuition, the complex ity of the nuclear many-body problem and the ever-increasing precision of experimental results require large-scale numerical studies for a quantitative understanding. Despite their importance, many nuclear physics computations remain something of a black art. A practicing nuclear physicist might be familiar with one or another type of computation, but there is no way to systemati cally acquire broad experience. Although computational methods and results are often presented in the literature, it is often difficult to obtain the working codes. More often than not, particular numerical expertise resides in one or a few individuals, who must be contacted informally to generate results; this option becomes unavailable when these individuals leave the field. And while the teaching of modern nuclear physics can benefit enormously from realistic computer simulations, there has been no source for much of the important material. The present volume, the second of two, is an experiment aimed at address ing some of these problems. We have asked recognized experts in various aspects of computational nuclear physics to codify their expertise in indi vidual chapters. Each chapter takes the form of a brief description of the relevant physics (with appropriate references to the literature), followed by a discussion of the numerical methods used and their embodiment in a FOR TRAN code. The chapters also contain sample input and test runs, as well as suggestions for further exploration.

Computational Nuclear Engineering and Radiological Science Using Python

Computational Nuclear Engineering and Radiological Science Using Python PDF Author: Ryan McClarren
Publisher: Academic Press
ISBN: 0128123710
Category : Technology & Engineering
Languages : en
Pages : 462

Book Description
Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering. Offers numerical methods as a tool to solve specific problems in nuclear engineering Provides examples on how to simulate different problems and produce graphs using Python Supplies accompanying codes and data on a companion website, along with solutions to end-of-chapter problems

Nuclear Computational Science

Nuclear Computational Science PDF Author: Yousry Azmy
Publisher: Springer Science & Business Media
ISBN: 9048134110
Category : Technology & Engineering
Languages : en
Pages : 476

Book Description
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.

Computational Nuclear Physics 1

Computational Nuclear Physics 1 PDF Author: K. Langanke
Publisher: Springer Science & Business Media
ISBN: 3642763561
Category : Science
Languages : en
Pages : 220

Book Description
A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.

Materials Issues for Generation IV Systems

Materials Issues for Generation IV Systems PDF Author: Véronique Ghetta
Publisher: Springer Science & Business Media
ISBN: 1402084226
Category : Technology & Engineering
Languages : en
Pages : 596

Book Description
Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the projected systems had to extend over the periods necessary to achieve low costs (at least 60 years). This book collects lectures and seminars presented at the homonymous NATO ASI held in autumn 2007 at the Institut d’Etudes Scientifiques in Cargèse, France. The adopted approach aims at improving and coordinating basic knowledge in materials science and engineering with specific areas of condensed matter physics, the physics of particle/matter interaction and of radiation damage. It is our belief that this methodology is crucially conditioning the development and the industrial production of new structural materials capable of coping with the requirements of these future reactors.

Numerical Simulations in Engineering and Science

Numerical Simulations in Engineering and Science PDF Author: Srinivasa Rao
Publisher: BoD – Books on Demand
ISBN: 1789234506
Category : Computers
Languages : en
Pages : 406

Book Description
Computational science is one of the rapidly growing multidisciplinary fields. The high-performance computing capabilities are utilized to solve and understand complex problems. This book offers a detailed exposition of the numerical methods that are used in engineering and science. The chapters are arranged in such a way that the readers will be able to select the topics appropriate to their interest and need. The text features a broad array of applications of computational methods to science and technology. This book would be an interesting supplement for the practicing engineers, scientists, and graduate students.