Author: Siva Ramakrishna Das
Publisher: Pearson Education India
ISBN: 9332540705
Category :
Languages : en
Pages : 769
Book Description
A text book designed exclusively for undergraduate students, Numerical Analysis presents the theoretical and numerical derivations amply supported by rich pedagogy for practice. With exhaustive theory to reinforce practical computations, the book delves into the concepts of errors in numerical computation, algebraic and transcendental equations, solution of linear system of equation, curve fitting, initial-value problem for ordinary differential equations, boundary-value problems of second order partial differential equations and solution of difference equations with constant coefficient.
Numerical Analysis, 1/e
Author: Siva Ramakrishna Das
Publisher: Pearson Education India
ISBN: 9332540705
Category :
Languages : en
Pages : 769
Book Description
A text book designed exclusively for undergraduate students, Numerical Analysis presents the theoretical and numerical derivations amply supported by rich pedagogy for practice. With exhaustive theory to reinforce practical computations, the book delves into the concepts of errors in numerical computation, algebraic and transcendental equations, solution of linear system of equation, curve fitting, initial-value problem for ordinary differential equations, boundary-value problems of second order partial differential equations and solution of difference equations with constant coefficient.
Publisher: Pearson Education India
ISBN: 9332540705
Category :
Languages : en
Pages : 769
Book Description
A text book designed exclusively for undergraduate students, Numerical Analysis presents the theoretical and numerical derivations amply supported by rich pedagogy for practice. With exhaustive theory to reinforce practical computations, the book delves into the concepts of errors in numerical computation, algebraic and transcendental equations, solution of linear system of equation, curve fitting, initial-value problem for ordinary differential equations, boundary-value problems of second order partial differential equations and solution of difference equations with constant coefficient.
A Brief Introduction to Numerical Analysis
Author: Eugene E. Tyrtyshnikov
Publisher: Springer Science & Business Media
ISBN: 0817681361
Category : Mathematics
Languages : en
Pages : 205
Book Description
A logically organized advanced textbook, which turns the reader into an active participant by asking questions, hinting, giving direct recommendations, comparing different methods, and discussing "pessimistic" and "optimistic" approaches to numerical analysis. Advanced students and graduate students majoring in computer science, physics and mathematics will find this book helpful.
Publisher: Springer Science & Business Media
ISBN: 0817681361
Category : Mathematics
Languages : en
Pages : 205
Book Description
A logically organized advanced textbook, which turns the reader into an active participant by asking questions, hinting, giving direct recommendations, comparing different methods, and discussing "pessimistic" and "optimistic" approaches to numerical analysis. Advanced students and graduate students majoring in computer science, physics and mathematics will find this book helpful.
Numerical Analysis
Author: Larkin Ridgway Scott
Publisher: Princeton University Press
ISBN: 1400838967
Category : Mathematics
Languages : en
Pages : 342
Book Description
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin
Publisher: Princeton University Press
ISBN: 1400838967
Category : Mathematics
Languages : en
Pages : 342
Book Description
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin
Theory and Applications of Numerical Analysis
Author: G. M. Phillips
Publisher: Elsevier
ISBN: 0080519121
Category : Mathematics
Languages : en
Pages : 461
Book Description
Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions
Publisher: Elsevier
ISBN: 0080519121
Category : Mathematics
Languages : en
Pages : 461
Book Description
Theory and Applications of Numerical Analysis is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included. - a unique blend of theory and applications - two brand new chapters on eigenvalues and splines - inclusion of formal algorithms - numerous fully worked examples - a large number of problems, many with solutions
Introduction to Numerical Analysis
Author: J. Stoer
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674
Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674
Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.
Numerical Methods for Two-Point Boundary-Value Problems
Author: Herbert B. Keller
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417
Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417
Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.
Numerical Methods that Work
Author: Forman S. Acton
Publisher: American Mathematical Soc.
ISBN: 147045727X
Category : Mathematics
Languages : en
Pages : 549
Book Description
Publisher: American Mathematical Soc.
ISBN: 147045727X
Category : Mathematics
Languages : en
Pages : 549
Book Description
Numerical Analysis
Author: Brian Sutton
Publisher: SIAM
ISBN: 1611975700
Category : Mathematics
Languages : en
Pages : 448
Book Description
This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.
Publisher: SIAM
ISBN: 1611975700
Category : Mathematics
Languages : en
Pages : 448
Book Description
This textbook develops the fundamental skills of numerical analysis: designing numerical methods, implementing them in computer code, and analyzing their accuracy and efficiency. A number of mathematical problems?interpolation, integration, linear systems, zero finding, and differential equations?are considered, and some of the most important methods for their solution are demonstrated and analyzed. Notable features of this book include the development of Chebyshev methods alongside more classical ones; a dual emphasis on theory and experimentation; the use of linear algebra to solve problems from analysis, which enables students to gain a greater appreciation for both subjects; and many examples and exercises. Numerical Analysis: Theory and Experiments is designed to be the primary text for a junior- or senior-level undergraduate course in numerical analysis for mathematics majors. Scientists and engineers interested in numerical methods, particularly those seeking an accessible introduction to Chebyshev methods, will also be interested in this book.
A First Course in the Numerical Analysis of Differential Equations
Author: A. Iserles
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Publisher: Cambridge University Press
ISBN: 0521734908
Category : Mathematics
Languages : en
Pages : 481
Book Description
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Fundamentals of Engineering Numerical Analysis
Author: Parviz Moin
Publisher: Cambridge University Press
ISBN: 1139489550
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.
Publisher: Cambridge University Press
ISBN: 1139489550
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.