Number Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Number Theory PDF full book. Access full book title Number Theory by Kazuya Kato. Download full books in PDF and EPUB format.

Number Theory

Number Theory PDF Author: Kazuya Kato
Publisher: American Mathematical Soc.
ISBN: 0821820958
Category : Class field theory
Languages : en
Pages : 243

Book Description


Number Theory

Number Theory PDF Author: Kazuya Kato
Publisher: American Mathematical Soc.
ISBN: 0821820958
Category : Class field theory
Languages : en
Pages : 243

Book Description


Unsolved Problems in Number Theory

Unsolved Problems in Number Theory PDF Author: Richard Guy
Publisher: Springer Science & Business Media
ISBN: 1475717385
Category : Mathematics
Languages : en
Pages : 176

Book Description
Second edition sold 2241 copies in N.A. and 1600 ROW. New edition contains 50 percent new material.

Famous Functions in Number Theory

Famous Functions in Number Theory PDF Author: Bowen Kerins
Publisher: American Mathematical Soc.
ISBN: 147042195X
Category : Education
Languages : en
Pages : 218

Book Description
Designed for precollege teachers by a collaborative of teachers, educators, and mathematicians, Famous Functions in Number Theory is based on a course offered in the Summer School Teacher Program at the Park City Mathematics Institute. But this book isn't a "course" in the traditional sense. It consists of a carefully sequenced collection of problem sets designed to develop several interconnected mathematical themes, and one of the goals of the problem sets is for readers to uncover these themes for themselves. Famous Functions in Number Theory introduces readers to the use of formal algebra in number theory. Through numerical experiments, participants learn how to use polynomial algebra as a bookkeeping mechanism that allows them to count divisors, build multiplicative functions, and compile multiplicative functions in a certain way that produces new ones. One capstone of the investigations is a beautiful result attributed to Fermat that determines the number of ways a positive integer can be written as a sum of two perfect squares. Famous Functions in Number Theory is a volume of the book series "IAS/PCMI-The Teacher Program Series" published by the American Mathematical Society. Each volume in that series covers the content of one Summer School Teacher Program year and is independent of the rest. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Fundamentals of Diophantine Geometry

Fundamentals of Diophantine Geometry PDF Author: S. Lang
Publisher: Springer Science & Business Media
ISBN: 1475718101
Category : Mathematics
Languages : en
Pages : 383

Book Description
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

Fundamentals of Number Theory

Fundamentals of Number Theory PDF Author: William J. LeVeque
Publisher: Courier Corporation
ISBN: 0486141500
Category : Mathematics
Languages : en
Pages : 292

Book Description
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory PDF Author: Richard Friedberg
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241

Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Number Theory and Its History

Number Theory and Its History PDF Author: Oystein Ore
Publisher: Courier Corporation
ISBN: 0486136434
Category : Mathematics
Languages : en
Pages : 404

Book Description
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

Introduction to Analytic and Probabilistic Number Theory

Introduction to Analytic and Probabilistic Number Theory PDF Author: G. Tenenbaum
Publisher: Cambridge University Press
ISBN: 9780521412612
Category : Mathematics
Languages : en
Pages : 180

Book Description
This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.

Number Theory

Number Theory PDF Author: W.A. Coppel
Publisher: Springer Science & Business Media
ISBN: 9780387298511
Category : Mathematics
Languages : en
Pages : 392

Book Description
This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.

Sequences, Groups, and Number Theory

Sequences, Groups, and Number Theory PDF Author: Valérie Berthé
Publisher: Birkhäuser
ISBN: 331969152X
Category : Mathematics
Languages : en
Pages : 591

Book Description
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.