Author: I. Gelfand
Publisher: American Mathematical Society
ISBN: 0821829726
Category : Mathematics
Languages : en
Pages : 308
Book Description
From the Preface (1960): “This book is devoted to an account of one of the branches of functional analysis, the theory of commutative normed rings, and the principal applications of that theory. It is based on [the authors'] paper written … in 1940, hard on the heels of the initial period of the development of this theory … The book consists of three parts. Part one, concerned with the theory of commutative normed rings and divided into two chapters; the first containing foundations of the theory and the second dealing with more special problems. Part two deals with applications to harmonic analysis and is divided into three chapters. The first chapter discusses the ring of absolutely integrable functions on a line with convolution as multiplication and finds the maximal ideals of this ring and some of its analogues. In the next chapter, these results are carried over to arbitrary commutative locally compact groups and they are made the foundation of the construction of harmonic analysis and the theory of characters. A new feature here is the construction of an invariant measure on the group of characters and a proof of the inversion formula for Fourier transforms that is not based on theorems on the representation of positive-definite functions or positive functionals … The last chapter of the second part—the most specialized of all the chapters—is devoted to the investigation of the ring of functions of bounded variation on a line with multiplication defined as convolution, including the complete description of the maximal ideals of this ring. The third part of the book is devoted to the discussion of two important classes of rings of functions: regular rings and rings with uniform convergence. The first of the chapters essentially studies the structure of ideals in regular rings. The chapter ends with an example of a ring of functions having closed ideals that cannot be represented as the intersections of maximal ideals. The second chapter discusses the ring $C(S)$ of all bounded continuous complex functions on completely regular spaces $S$ and various of its subrings … Since noncommutative normed rings with an involution are important for group-theoretical applications, the paper by I. M. Gelfand and N. A. Naimark, ‘Normed Rings with an Involution and their Representations’, is reproduced at the end of the book, slightly abridged, in the form of an appendix … This monograph also contains an account of the foundations of the theory of commutative normed rings without, however, touching upon the majority of its analytic applications … The reader [should] have knowledge of the elements of the theory of normed spaces and of set-theoretical topology. For an understanding of the fourth chapter, [the reader should] also know what a topological group is. It stands to reason that the basic concepts of the theory of measure and of the Lebesgue integral are also assumed to be known …”
Commutative Normed Rings
Author: I. Gelfand
Publisher: American Mathematical Society
ISBN: 0821829726
Category : Mathematics
Languages : en
Pages : 308
Book Description
From the Preface (1960): “This book is devoted to an account of one of the branches of functional analysis, the theory of commutative normed rings, and the principal applications of that theory. It is based on [the authors'] paper written … in 1940, hard on the heels of the initial period of the development of this theory … The book consists of three parts. Part one, concerned with the theory of commutative normed rings and divided into two chapters; the first containing foundations of the theory and the second dealing with more special problems. Part two deals with applications to harmonic analysis and is divided into three chapters. The first chapter discusses the ring of absolutely integrable functions on a line with convolution as multiplication and finds the maximal ideals of this ring and some of its analogues. In the next chapter, these results are carried over to arbitrary commutative locally compact groups and they are made the foundation of the construction of harmonic analysis and the theory of characters. A new feature here is the construction of an invariant measure on the group of characters and a proof of the inversion formula for Fourier transforms that is not based on theorems on the representation of positive-definite functions or positive functionals … The last chapter of the second part—the most specialized of all the chapters—is devoted to the investigation of the ring of functions of bounded variation on a line with multiplication defined as convolution, including the complete description of the maximal ideals of this ring. The third part of the book is devoted to the discussion of two important classes of rings of functions: regular rings and rings with uniform convergence. The first of the chapters essentially studies the structure of ideals in regular rings. The chapter ends with an example of a ring of functions having closed ideals that cannot be represented as the intersections of maximal ideals. The second chapter discusses the ring $C(S)$ of all bounded continuous complex functions on completely regular spaces $S$ and various of its subrings … Since noncommutative normed rings with an involution are important for group-theoretical applications, the paper by I. M. Gelfand and N. A. Naimark, ‘Normed Rings with an Involution and their Representations’, is reproduced at the end of the book, slightly abridged, in the form of an appendix … This monograph also contains an account of the foundations of the theory of commutative normed rings without, however, touching upon the majority of its analytic applications … The reader [should] have knowledge of the elements of the theory of normed spaces and of set-theoretical topology. For an understanding of the fourth chapter, [the reader should] also know what a topological group is. It stands to reason that the basic concepts of the theory of measure and of the Lebesgue integral are also assumed to be known …”
Publisher: American Mathematical Society
ISBN: 0821829726
Category : Mathematics
Languages : en
Pages : 308
Book Description
From the Preface (1960): “This book is devoted to an account of one of the branches of functional analysis, the theory of commutative normed rings, and the principal applications of that theory. It is based on [the authors'] paper written … in 1940, hard on the heels of the initial period of the development of this theory … The book consists of three parts. Part one, concerned with the theory of commutative normed rings and divided into two chapters; the first containing foundations of the theory and the second dealing with more special problems. Part two deals with applications to harmonic analysis and is divided into three chapters. The first chapter discusses the ring of absolutely integrable functions on a line with convolution as multiplication and finds the maximal ideals of this ring and some of its analogues. In the next chapter, these results are carried over to arbitrary commutative locally compact groups and they are made the foundation of the construction of harmonic analysis and the theory of characters. A new feature here is the construction of an invariant measure on the group of characters and a proof of the inversion formula for Fourier transforms that is not based on theorems on the representation of positive-definite functions or positive functionals … The last chapter of the second part—the most specialized of all the chapters—is devoted to the investigation of the ring of functions of bounded variation on a line with multiplication defined as convolution, including the complete description of the maximal ideals of this ring. The third part of the book is devoted to the discussion of two important classes of rings of functions: regular rings and rings with uniform convergence. The first of the chapters essentially studies the structure of ideals in regular rings. The chapter ends with an example of a ring of functions having closed ideals that cannot be represented as the intersections of maximal ideals. The second chapter discusses the ring $C(S)$ of all bounded continuous complex functions on completely regular spaces $S$ and various of its subrings … Since noncommutative normed rings with an involution are important for group-theoretical applications, the paper by I. M. Gelfand and N. A. Naimark, ‘Normed Rings with an Involution and their Representations’, is reproduced at the end of the book, slightly abridged, in the form of an appendix … This monograph also contains an account of the foundations of the theory of commutative normed rings without, however, touching upon the majority of its analytic applications … The reader [should] have knowledge of the elements of the theory of normed spaces and of set-theoretical topology. For an understanding of the fourth chapter, [the reader should] also know what a topological group is. It stands to reason that the basic concepts of the theory of measure and of the Lebesgue integral are also assumed to be known …”
Normed Rings
Author: Mark Aronovich Naĭmark
Publisher:
ISBN:
Category : Banach algebras
Languages : en
Pages : 600
Book Description
Publisher:
ISBN:
Category : Banach algebras
Languages : en
Pages : 600
Book Description
Discrete Mathematics and Symmetry
Author: Angel Garrido
Publisher: MDPI
ISBN: 3039281909
Category : Mathematics
Languages : en
Pages : 458
Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.
Publisher: MDPI
ISBN: 3039281909
Category : Mathematics
Languages : en
Pages : 458
Book Description
Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.
Algebras, Rings and Modules
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781402026904
Category : Mathematics
Languages : en
Pages : 396
Book Description
The text of the first volume of the book covers the major topics in ring and module theory and includes both fundamental classical results and more recent developments. The basic tools of investigation are methods from the theory of modules, which allow a very simple and clear approach both to classical and new results. An unusual main feature of this book is the use of the technique of quivers for studying the structure of rings. A considerable part of the first volume of the book is devoted to a study of special classes of rings and algebras, such as serial rings, hereditary rings, semidistributive rings and tiled orders. Many results of this text until now have been available in journal articles only. This book is aimed at graduate and post-graduate students and for all mathematicians who use algebraic techniques in their work. This is a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and algebras and is suitable for independent study.
Publisher: Springer Science & Business Media
ISBN: 9781402026904
Category : Mathematics
Languages : en
Pages : 396
Book Description
The text of the first volume of the book covers the major topics in ring and module theory and includes both fundamental classical results and more recent developments. The basic tools of investigation are methods from the theory of modules, which allow a very simple and clear approach both to classical and new results. An unusual main feature of this book is the use of the technique of quivers for studying the structure of rings. A considerable part of the first volume of the book is devoted to a study of special classes of rings and algebras, such as serial rings, hereditary rings, semidistributive rings and tiled orders. Many results of this text until now have been available in journal articles only. This book is aimed at graduate and post-graduate students and for all mathematicians who use algebraic techniques in their work. This is a self-contained book which is intended to be a modern textbook on the structure theory of associative rings and algebras and is suitable for independent study.
Complete Normed Algebras
Author: Frank F. Bonsall
Publisher: Springer Science & Business Media
ISBN: 3642656692
Category : Mathematics
Languages : en
Pages : 312
Book Description
The axioms of a complex Banach algebra were very happily chosen. They are simple enough to allow wide ranging fields of application, notably in harmonic analysis, operator theory and function algebras. At the same time they are tight enough to allow the development of a rich collection of results, mainly through the interplay of the elementary parts of the theories of analytic functions, rings, and Banach spaces. Many of the theorems are things of great beauty, simple in statement, surprising in content, and elegant in proof. We believe that some of them deserve to be known by every mathematician. The aim of this book is to give an account of the principal methods and results in the theory of Banach algebras, both commutative and non commutative. It has been necessary to apply certain exclusion principles in order to keep our task within bounds. Certain classes of concrete Banach algebras have a very rich literature, namely C*-algebras, function algebras, and group algebras. We have regarded these highly developed theories as falling outside our scope. We have not entirely avoided them, but have been concerned with their place in the general theory, and have stopped short of developing their special properties. For reasons of space and time we have omitted certain other topics which would quite naturally have been included, in particular the theories of multipliers and of extensions of Banach algebras, and the implications for Banach algebras of some of the standard algebraic conditions on rings.
Publisher: Springer Science & Business Media
ISBN: 3642656692
Category : Mathematics
Languages : en
Pages : 312
Book Description
The axioms of a complex Banach algebra were very happily chosen. They are simple enough to allow wide ranging fields of application, notably in harmonic analysis, operator theory and function algebras. At the same time they are tight enough to allow the development of a rich collection of results, mainly through the interplay of the elementary parts of the theories of analytic functions, rings, and Banach spaces. Many of the theorems are things of great beauty, simple in statement, surprising in content, and elegant in proof. We believe that some of them deserve to be known by every mathematician. The aim of this book is to give an account of the principal methods and results in the theory of Banach algebras, both commutative and non commutative. It has been necessary to apply certain exclusion principles in order to keep our task within bounds. Certain classes of concrete Banach algebras have a very rich literature, namely C*-algebras, function algebras, and group algebras. We have regarded these highly developed theories as falling outside our scope. We have not entirely avoided them, but have been concerned with their place in the general theory, and have stopped short of developing their special properties. For reasons of space and time we have omitted certain other topics which would quite naturally have been included, in particular the theories of multipliers and of extensions of Banach algebras, and the implications for Banach algebras of some of the standard algebraic conditions on rings.
Laurent Series Rings and Related Rings
Author: Askar Tuganbaev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110702304
Category : Mathematics
Languages : en
Pages : 265
Book Description
In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110702304
Category : Mathematics
Languages : en
Pages : 265
Book Description
In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.
Semitopological Vector Spaces
Author: Mark Burgin
Publisher: CRC Press
ISBN: 1351800299
Category : Mathematics
Languages : en
Pages : 324
Book Description
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
Publisher: CRC Press
ISBN: 1351800299
Category : Mathematics
Languages : en
Pages : 324
Book Description
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
Eight papers on functional analysis and partial differential equations
Author: V. M. Borok
Publisher: American Mathematical Soc.
ISBN: 9780821896280
Category : Mathematics
Languages : en
Pages : 342
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821896280
Category : Mathematics
Languages : en
Pages : 342
Book Description
Neutrosophic Sets and Systems: An International Book Series in Information Science and Engineering, vol. 21 / 2018
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599735814
Category : Mathematics
Languages : en
Pages : 168
Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Publisher: Infinite Study
ISBN: 1599735814
Category : Mathematics
Languages : en
Pages : 168
Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Quadruple Neutrosophic Theory And Applications, Volume I
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 309
Book Description
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 309
Book Description