Nonstandard Analysis for the Working Mathematician PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonstandard Analysis for the Working Mathematician PDF full book. Access full book title Nonstandard Analysis for the Working Mathematician by Peter A. Loeb. Download full books in PDF and EPUB format.

Nonstandard Analysis for the Working Mathematician

Nonstandard Analysis for the Working Mathematician PDF Author: Peter A. Loeb
Publisher: Springer
ISBN: 9401773270
Category : Mathematics
Languages : en
Pages : 485

Book Description
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.

Nonstandard Analysis for the Working Mathematician

Nonstandard Analysis for the Working Mathematician PDF Author: Peter A. Loeb
Publisher: Springer
ISBN: 9401773270
Category : Mathematics
Languages : en
Pages : 485

Book Description
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.

Non-standard Analysis

Non-standard Analysis PDF Author: Abraham Robinson
Publisher: Princeton University Press
ISBN: 1400884225
Category : Mathematics
Languages : en
Pages : 315

Book Description
Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Radically Elementary Probability Theory

Radically Elementary Probability Theory PDF Author: Edward Nelson
Publisher: Princeton University Press
ISBN: 9780691084749
Category : Mathematics
Languages : en
Pages : 112

Book Description
Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form.

Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Nonstandard Methods in Stochastic Analysis and Mathematical Physics PDF Author: Sergio Albeverio
Publisher: Courier Dover Publications
ISBN: 0486468992
Category : Mathematics
Languages : en
Pages : 529

Book Description
Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.

Nonstandard Analysis

Nonstandard Analysis PDF Author: Leif O. Arkeryd
Publisher: Springer Science & Business Media
ISBN: 9780792345862
Category : Mathematics
Languages : en
Pages : 392

Book Description
1 More than thirty years after its discovery by Abraham Robinson , the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum,as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians.

Nonstandard Models of Arithmetic and Set Theory

Nonstandard Models of Arithmetic and Set Theory PDF Author: Ali Enayat
Publisher: American Mathematical Soc.
ISBN: 0821835351
Category : Mathematics
Languages : en
Pages : 184

Book Description
This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.

Infinitesimal Calculus

Infinitesimal Calculus PDF Author: James M. Henle
Publisher: Courier Corporation
ISBN: 0486151018
Category : Mathematics
Languages : en
Pages : 146

Book Description
Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.

Handbook of Analysis and Its Foundations

Handbook of Analysis and Its Foundations PDF Author: Eric Schechter
Publisher: Academic Press
ISBN: 0080532993
Category : Mathematics
Languages : en
Pages : 907

Book Description
Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/

De Motu and the Analyst

De Motu and the Analyst PDF Author: G. Berkeley
Publisher: Springer Science & Business Media
ISBN: 9401125929
Category : Computers
Languages : en
Pages : 235

Book Description
Berkeley's philosophy has been much studied and discussed over the years, and a growing number of scholars have come to the realization that scientific and mathematical writings are an essential part of his philosophical enterprise. The aim of this volume is to present Berkeley's two most important scientific texts in a form which meets contemporary standards of scholarship while rendering them accessible to the modern reader. Although editions of both are contained in the fourth volume of the Works, these lack adequate introductions and do not provide com plete and corrected texts. The present edition contains a complete and critically established text of both De Motu and The Analyst, in addi tion to a new translation of De Motu. The introductions and notes are designed to provide the background necessary for a full understanding of Berkeley's account of science and mathematics. Although these two texts are very different, they are united by a shared a concern with the work of Newton and Leibniz. Berkeley's De Motu deals extensively with Newton's Principia and Leibniz's Specimen Dynamicum, while The Analyst critiques both Leibnizian and Newto nian mathematics. Berkeley is commonly thought of as a successor to Locke or Malebranche, but as these works show he is also a successor to Newton and Leibniz.

Real Analysis Through Modern Infinitesimals

Real Analysis Through Modern Infinitesimals PDF Author: Nader Vakil
Publisher: Cambridge University Press
ISBN: 1107002028
Category : Mathematics
Languages : en
Pages : 587

Book Description
A coherent, self-contained treatment of the central topics of real analysis employing modern infinitesimals.