Nonparametric Statistical Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonparametric Statistical Methods PDF full book. Access full book title Nonparametric Statistical Methods by Myles Hollander. Download full books in PDF and EPUB format.

Nonparametric Statistical Methods

Nonparametric Statistical Methods PDF Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872

Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistical Methods

Nonparametric Statistical Methods PDF Author: Myles Hollander
Publisher: John Wiley & Sons
ISBN: 1118553292
Category : Mathematics
Languages : en
Pages : 872

Book Description
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Nonparametric Statistical Methods and Related Topics

Nonparametric Statistical Methods and Related Topics PDF Author: Francisco J. Samaniego
Publisher: World Scientific
ISBN: 9814366579
Category : Mathematics
Languages : en
Pages : 479

Book Description
Review papers. 1. On the scholarly work of P.K. Bhattacharya / P. Hall and F.J. Samaniego. 2. The propensity score and its role in causal inference / C. Drake and T. Loux. 3. Recent tests for symmetry with multivariate and structured data: a review / S.G. Meintanis and J. Ngatchou-Wandji -- Papers on general nonparametric inference. 4. On robust versions of classical tests with dependent data / J. Jiang. 5. Density estimation by sampling from stationary continuous time parameter associated processes / G.G. Roussas and D. Bhattacharya. 6. A Short proof of the Feigin-Tweedie theorem on the existence of the mean functional of a Dirichlet process / J. Sethuraman. 7. Max-min Bernstein polynomial estimation of a discontinuity in distribution / K.-S. Song. 8. U-statistics based on higher-order spacings / D.D. Tung and S.R. Jammalamadaka. 9. Nonparametric models for non-Gaussian longitudinal data / N. Zhang, H.-G. Muller and J.-L. Wang -- Papers on aspects of linear or generalized linear models. 10. Better residuals / R. Beran. 11. The use of Peters-Belson regression in legal cases / E. Bura, J.L. Gastwirth and H. Hikawa. 12. On a hybrid approach to parametric and nonparametric regression / P. Burman and P. Chaudhuri. 13. Nonparametric regression models with integrated covariates / Z. Cai. 14. A dynamic test for misspecification of a linear model / M.P. McAssey and F. Hsieh. 15. The principal component decomposition of the basic martingale / W. Stute -- Papers on time series analysis. 16. Fast scatterplot smoothing using blockwise least squares fitting / A. Aue and T.C.M. Lee. 17. Some recent advances in semiparametric estimation of the GARCH model / J. Di and A. Gangopadhyay. 18. Extreme dependence in multivariate time series: a review / R. Sen and Z. Tan. 19. Dynamic mixed models for irregularly observed water quality data / R.H. Shumway -- Papers on asymptotic theory. 20. Asymptotic behavior of the kernel density estimators for nonstationary dependent random variables with binned data / J.-F. Lenain, M. Harel and M.L. Puri. 21. Convergence rates of an improved isotonic regression estimator / H. Mukerjee. 22. Asymptotic distribution of the smallest eigenvalue of Wishart(N, n) When N, n ' [symbol] such that N/n --> 0 / D. Paul

Topics in Nonparametric Statistics

Topics in Nonparametric Statistics PDF Author: Michael G. Akritas
Publisher: Springer
ISBN: 1493905694
Category : Mathematics
Languages : en
Pages : 369

Book Description
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for Non Parametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI and other organizations. M.G. Akritas, S.N. Lahiri and D.N. Politis are the first executive committee members of ISNPS and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the world and contributes to the further development of the field. The conference program included over 250 talks, including special invited talks, plenary talks and contributed talks on all areas of nonparametric statistics. Out of these talks, some of the most pertinent ones have been refereed and developed into chapters that share both research and developments in the field.

All of Nonparametric Statistics

All of Nonparametric Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272

Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

Nonparametric Statistics with Applications to Science and Engineering

Nonparametric Statistics with Applications to Science and Engineering PDF Author: Paul H. Kvam
Publisher: John Wiley & Sons
ISBN: 9780470168691
Category : Mathematics
Languages : en
Pages : 448

Book Description
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Nonparametric Methods in Change Point Problems

Nonparametric Methods in Change Point Problems PDF Author: E. Brodsky
Publisher: Springer Science & Business Media
ISBN: 9780792321224
Category : Mathematics
Languages : en
Pages : 228

Book Description
The explosive development of information science and technology puts in new problems involving statistical data analysis. These problems result from higher re quirements concerning the reliability of statistical decisions, the accuracy of math ematical models and the quality of control in complex systems. A new aspect of statistical analysis has emerged, closely connected with one of the basic questions of cynergetics: how to "compress" large volumes of experimental data in order to extract the most valuable information from data observed. De tection of large "homogeneous" segments of data enables one to identify "hidden" regularities in an object's behavior, to create mathematical models for each seg ment of homogeneity, to choose an appropriate control, etc. Statistical methods dealing with the detection of changes in the characteristics of random processes can be of great use in all these problems. These methods have accompanied the rapid growth in data beginning from the middle of our century. According to a tradition of more than thirty years, we call this sphere of statistical analysis the "theory of change-point detection. " During the last fifteen years, we have witnessed many exciting developments in the theory of change-point detection. New promising directions of research have emerged, and traditional trends have flourished anew. Despite this, most of the results are widely scattered in the literature and few monographs exist. A real need has arisen for up-to-date books which present an account of important current research trends, one of which is the theory of non parametric change--point detection.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R PDF Author: John Kloke
Publisher: CRC Press
ISBN: 1439873445
Category : Mathematics
Languages : en
Pages : 283

Book Description
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis PDF Author: Victor Patrangenaru
Publisher: CRC Press
ISBN: 1439820511
Category : Mathematics
Languages : en
Pages : 534

Book Description
A New Way of Analyzing Object Data from a Nonparametric ViewpointNonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods PDF Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
ISBN:
Category : Nonparametric statistics
Languages : en
Pages : 492

Book Description
Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Nonparametric Statistics for Non-Statisticians

Nonparametric Statistics for Non-Statisticians PDF Author: Gregory W. Corder
Publisher: John Wiley & Sons
ISBN: 1118211251
Category : Mathematics
Languages : en
Pages : 199

Book Description
A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications.