Author: Serge Darolles
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The focus of the paper is the nonparametric estimation of an instrumental regression function f defined by conditional moment restrictions stemming from a structural econometric model: E [Y - f (Z) | W] = 0, and involving endogenous variables Y and Z and instruments W. The function f is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Nonparametric Instrumental Regression
Author: Serge Darolles
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The focus of the paper is the nonparametric estimation of an instrumental regression function f defined by conditional moment restrictions stemming from a structural econometric model: E [Y - f (Z) | W] = 0, and involving endogenous variables Y and Z and instruments W. The function f is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The focus of the paper is the nonparametric estimation of an instrumental regression function f defined by conditional moment restrictions stemming from a structural econometric model: E [Y - f (Z) | W] = 0, and involving endogenous variables Y and Z and instruments W. The function f is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Testing Exogeneity
Author: Neil R. Ericsson
Publisher:
ISBN: 9780198774044
Category : Business & Economics
Languages : en
Pages : 436
Book Description
This book discusses the nature of exogeneity, a central concept in standard econometrics texts, and shows how to test for it through numerous substantive empirical examples from around the world, including the UK, Argentina, Denmark, Finland, and Norway. Part I defines terms and provides the necessary background; Part II contains applications to models of expenditure, money demand, inflation, wages and prices, and exchange rates; and Part III extends various tests of constancy and forecast accuracy, which are central to testing super exogeneity. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.
Publisher:
ISBN: 9780198774044
Category : Business & Economics
Languages : en
Pages : 436
Book Description
This book discusses the nature of exogeneity, a central concept in standard econometrics texts, and shows how to test for it through numerous substantive empirical examples from around the world, including the UK, Argentina, Denmark, Finland, and Norway. Part I defines terms and provides the necessary background; Part II contains applications to models of expenditure, money demand, inflation, wages and prices, and exchange rates; and Part III extends various tests of constancy and forecast accuracy, which are central to testing super exogeneity. About the Series Advanced Texts in Econometrics is a distinguished and rapidly expanding series in which leading econometricians assess recent developments in such areas as stochastic probability, panel and time series data analysis, modeling, and cointegration. In both hardback and affordable paperback, each volume explains the nature and applicability of a topic in greater depth than possible in introductory textbooks or single journal articles. Each definitive work is formatted to be as accessible and convenient for those who are not familiar with the detailed primary literature.
Applied Nonparametric Econometrics
Author: Daniel J. Henderson
Publisher: Cambridge University Press
ISBN: 110701025X
Category : Business & Economics
Languages : en
Pages : 381
Book Description
The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
Publisher: Cambridge University Press
ISBN: 110701025X
Category : Business & Economics
Languages : en
Pages : 381
Book Description
The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
Identification and Inference for Econometric Models
Author: Donald W. K. Andrews
Publisher: Cambridge University Press
ISBN: 9780521844413
Category : Business & Economics
Languages : en
Pages : 606
Book Description
This 2005 collection pushed forward the research frontier in four areas of theoretical econometrics.
Publisher: Cambridge University Press
ISBN: 9780521844413
Category : Business & Economics
Languages : en
Pages : 606
Book Description
This 2005 collection pushed forward the research frontier in four areas of theoretical econometrics.
Nonparametric Econometrics
Author: Qi Li
Publisher: Princeton University Press
ISBN: 1400841062
Category : Business & Economics
Languages : en
Pages : 769
Book Description
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Publisher: Princeton University Press
ISBN: 1400841062
Category : Business & Economics
Languages : en
Pages : 769
Book Description
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Emergency General Surgery
Author: Carlos V. R. Brown
Publisher: Springer
ISBN: 3319962868
Category : Medical
Languages : en
Pages : 521
Book Description
The field of emergency general surgery encompasses a wide array of surgical diseases, ranging from the simple to the complex. These diseases may include inflammatory, infectious, and hemorrhagic processes spanning the entire gastrointestinal tract. Complications of abdominal wall hernias, compartment syndromes, skin and soft tissue infections, and surgical diseases are significantly complex in special populations, including elderly, obese, pregnant, immunocompromised, and cirrhotic patients. This book covers emergency general surgery topics in a succinct, practical and understandable fashion. After reviewing the general principles in caring for the emergency general surgery patient, this text discusses current evidence and the best practices stratified by organ system, including esophageal, gastroduodenal, hepatobiliary and pancreatic, small and large bowel, anorectal, thoracic, and hernias. Chapters are written by experts in the field and present a logical, straightforward, and easy to understand approach to the emergency general surgery patient, as well as provide patient care algorithms where appropriate. Emergency General Surgery: A Practical Approach provides surgeons and surgery residents with a practical and evidence-based approach to diagnosing and managing a wide array of surgical diseases encountered on emergency general surgery call.
Publisher: Springer
ISBN: 3319962868
Category : Medical
Languages : en
Pages : 521
Book Description
The field of emergency general surgery encompasses a wide array of surgical diseases, ranging from the simple to the complex. These diseases may include inflammatory, infectious, and hemorrhagic processes spanning the entire gastrointestinal tract. Complications of abdominal wall hernias, compartment syndromes, skin and soft tissue infections, and surgical diseases are significantly complex in special populations, including elderly, obese, pregnant, immunocompromised, and cirrhotic patients. This book covers emergency general surgery topics in a succinct, practical and understandable fashion. After reviewing the general principles in caring for the emergency general surgery patient, this text discusses current evidence and the best practices stratified by organ system, including esophageal, gastroduodenal, hepatobiliary and pancreatic, small and large bowel, anorectal, thoracic, and hernias. Chapters are written by experts in the field and present a logical, straightforward, and easy to understand approach to the emergency general surgery patient, as well as provide patient care algorithms where appropriate. Emergency General Surgery: A Practical Approach provides surgeons and surgery residents with a practical and evidence-based approach to diagnosing and managing a wide array of surgical diseases encountered on emergency general surgery call.
Multivariate Nonparametric Regression and Visualization
Author: Jussi Sakari Klemelä
Publisher: John Wiley & Sons
ISBN: 1118593502
Category : Mathematics
Languages : en
Pages : 317
Book Description
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.
Publisher: John Wiley & Sons
ISBN: 1118593502
Category : Mathematics
Languages : en
Pages : 317
Book Description
A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.
An Introduction to the Advanced Theory of Nonparametric Econometrics
Author: Jeffrey S. Racine
Publisher: Cambridge University Press
ISBN: 1108483402
Category : Business & Economics
Languages : en
Pages : 435
Book Description
Provides theory, open source R implementations, and the latest tools for reproducible nonparametric econometric research.
Publisher: Cambridge University Press
ISBN: 1108483402
Category : Business & Economics
Languages : en
Pages : 435
Book Description
Provides theory, open source R implementations, and the latest tools for reproducible nonparametric econometric research.
The Oxford Handbook of Panel Data
Author: Badi Hani Baltagi
Publisher:
ISBN: 0199940045
Category : Business & Economics
Languages : en
Pages : 705
Book Description
The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.
Publisher:
ISBN: 0199940045
Category : Business & Economics
Languages : en
Pages : 705
Book Description
The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.
Semiparametric Methods in Econometrics
Author: Joel L. Horowitz
Publisher: Springer Science & Business Media
ISBN: 1461206219
Category : Mathematics
Languages : en
Pages : 211
Book Description
Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.
Publisher: Springer Science & Business Media
ISBN: 1461206219
Category : Mathematics
Languages : en
Pages : 211
Book Description
Many econometric models contain unknown functions as well as finite- dimensional parameters. Examples of such unknown functions are the distribution function of an unobserved random variable or a transformation of an observed variable. Econometric methods for estimating population parameters in the presence of unknown functions are called "semiparametric." During the past 15 years, much research has been carried out on semiparametric econometric models that are relevant to empirical economics. This book synthesizes the results that have been achieved for five important classes of models. The book is aimed at graduate students in econometrics and statistics as well as professionals who are not experts in semiparametic methods. The usefulness of the methods will be illustrated with applications that use real data.