Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Nonlinear Waves, Solitons and Chaos
Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Publisher: Cambridge University Press
ISBN: 9780521635578
Category : Mathematics
Languages : en
Pages : 416
Book Description
The second edition of a highly successful book on nonlinear waves, solitons and chaos.
Waves Called Solitons
Author: Michel Remoissenet
Publisher: Springer Science & Business Media
ISBN: 3662030578
Category : Science
Languages : en
Pages : 248
Book Description
Nonlinearity is a fascinating element of nature whose importance has been appreciated for many years when considering large-amplitude wave motions observed in various fields ranging from fluids and plasmas to solid-state, chemical, biological, and geological systems. Localized large-amplitude waves called solitons, which propagate without spreading and have particle-like properties, represent one of the most striking aspects of nonlinear phenomena. Although a wealth of literature on the subject, including theoretical and numerical studies, is available in good recent books and research journals, very little material has found its way into introductory texbooks and curricula. This is perhaps due to a belief that nonlinear physics is difficult and cannot be taught at an introductory level to undergraduate students and practitioners. Consequently, there is considerable interest in developing practical material suitable for students, at the lowest introductory level. This book is intended to be an elementary introduction to the physics of solitons, for students, physicists, engineers and practitioners. We present the modeling of nonlinear phenomena where soliton-like waves are involved, together with applications to a wide variety of concrete systems and experiments. This book is designed as a book of physical ideas and basic methods and not as an up-to-the minute book concerned with the latest research results. The background in physics and the amount of mathematical knowledge assumed of the reader is within that usually accumulated by junior or senior students in physics.
Publisher: Springer Science & Business Media
ISBN: 3662030578
Category : Science
Languages : en
Pages : 248
Book Description
Nonlinearity is a fascinating element of nature whose importance has been appreciated for many years when considering large-amplitude wave motions observed in various fields ranging from fluids and plasmas to solid-state, chemical, biological, and geological systems. Localized large-amplitude waves called solitons, which propagate without spreading and have particle-like properties, represent one of the most striking aspects of nonlinear phenomena. Although a wealth of literature on the subject, including theoretical and numerical studies, is available in good recent books and research journals, very little material has found its way into introductory texbooks and curricula. This is perhaps due to a belief that nonlinear physics is difficult and cannot be taught at an introductory level to undergraduate students and practitioners. Consequently, there is considerable interest in developing practical material suitable for students, at the lowest introductory level. This book is intended to be an elementary introduction to the physics of solitons, for students, physicists, engineers and practitioners. We present the modeling of nonlinear phenomena where soliton-like waves are involved, together with applications to a wide variety of concrete systems and experiments. This book is designed as a book of physical ideas and basic methods and not as an up-to-the minute book concerned with the latest research results. The background in physics and the amount of mathematical knowledge assumed of the reader is within that usually accumulated by junior or senior students in physics.
Nonlinear Periodic Waves and Their Modulations
Author: Anatoli? Mikha?lovich Kamchatnov
Publisher: World Scientific
ISBN: 981024407X
Category : Science
Languages : en
Pages : 399
Book Description
Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.
Publisher: World Scientific
ISBN: 981024407X
Category : Science
Languages : en
Pages : 399
Book Description
Although the mathematical theory of nonlinear waves and solitons has made great progress, its applications to concrete physical problems are rather poor, especially when compared with the classical theory of linear dispersive waves and nonlinear fluid motion. The Whitham method, which describes the combining action of the dispersive and nonlinear effects as modulations of periodic waves, is not widely used by applied mathematicians and physicists, though it provides a direct and natural way to treat various problems in nonlinear wave theory. Therefore it is topical to describe recent developments of the Whitham theory in a clear and simple form suitable for applications in various branches of physics.This book develops the techniques of the theory of nonlinear periodic waves at elementary level and in great pedagogical detail. It provides an introduction to a Whitham's theory of modulation in a form suitable for applications. The exposition is based on a thorough analysis of representative examples taken from fluid mechanics, nonlinear optics and plasma physics rather than on the formulation and study of a mathematical theory. Much attention is paid to physical motivations of the mathematical methods developed in the book. The main applications considered include the theory of collisionless shock waves in dispersive systems and the nonlinear theory of soliton formation in modulationally unstable systems. Exercises are provided to amplify the discussion of important topics such as singular perturbation theory, Riemann invariants, the finite gap integration method, and Whitham equations and their solutions.
Nonlinear Waves in Integrable and Non-integrable Systems
Author: Jianke Yang
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Publisher: SIAM
ISBN: 0898717051
Category : Science
Languages : en
Pages : 452
Book Description
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
Nonlinear Waves and Solitons
Author: M. Toda
Publisher: Springer Science & Business Media
ISBN: 9780792304425
Category : Mathematics
Languages : en
Pages : 396
Book Description
' it is certainly a beautiful presentation, very well adapted to teaching beginners. I am sure this book will be successful.' Inverse Problems, 1990
Publisher: Springer Science & Business Media
ISBN: 9780792304425
Category : Mathematics
Languages : en
Pages : 396
Book Description
' it is certainly a beautiful presentation, very well adapted to teaching beginners. I am sure this book will be successful.' Inverse Problems, 1990
Nonlinear Optical Waves
Author: A.I. Maimistov
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Publisher: Springer Science & Business Media
ISBN: 9401724482
Category : Science
Languages : en
Pages : 668
Book Description
A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.
Nonlinear Dispersive Waves
Author: Mark J. Ablowitz
Publisher: Cambridge University Press
ISBN: 1139503480
Category : Mathematics
Languages : en
Pages : 363
Book Description
The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.
Publisher: Cambridge University Press
ISBN: 1139503480
Category : Mathematics
Languages : en
Pages : 363
Book Description
The field of nonlinear dispersive waves has developed enormously since the work of Stokes, Boussinesq and Korteweg–de Vries (KdV) in the nineteenth century. In the 1960s, researchers developed effective asymptotic methods for deriving nonlinear wave equations, such as the KdV equation, governing a broad class of physical phenomena that admit special solutions including those commonly known as solitons. This book describes the underlying approximation techniques and methods for finding solutions to these and other equations. The concepts and methods covered include wave dispersion, asymptotic analysis, perturbation theory, the method of multiple scales, deep and shallow water waves, nonlinear optics including fiber optic communications, mode-locked lasers and dispersion-managed wave phenomena. Most chapters feature exercise sets, making the book suitable for advanced courses or for self-directed learning. Graduate students and researchers will find this an excellent entry to a thriving area at the intersection of applied mathematics, engineering and physical science.
Introduction to the Mathematical Physics of Nonlinear Waves
Author: Minoru Fujimoto
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
A Course on Nonlinear Waves
Author: S.S. Shen
Publisher: Springer
ISBN: 0792322924
Category : Mathematics
Languages : en
Pages : 327
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Publisher: Springer
ISBN: 0792322924
Category : Mathematics
Languages : en
Pages : 327
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Glimpses of Soliton Theory
Author: Alex Kasman
Publisher: American Mathematical Soc.
ISBN: 0821852450
Category : Mathematics
Languages : en
Pages : 322
Book Description
Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --
Publisher: American Mathematical Soc.
ISBN: 0821852450
Category : Mathematics
Languages : en
Pages : 322
Book Description
Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. --