Author: T.L. Gill
Publisher: Springer
ISBN: 3540477918
Category : Mathematics
Languages : en
Pages : 194
Book Description
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Nonlinear Semigroups, Partial Differential Equations and Attractors
Author: T.L. Gill
Publisher: Springer
ISBN: 3540477918
Category : Mathematics
Languages : en
Pages : 194
Book Description
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Publisher: Springer
ISBN: 3540477918
Category : Mathematics
Languages : en
Pages : 194
Book Description
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Nonlinear Semigroups, Partial Differential Equations and Attractors
Author: Tepper L. Gill
Publisher: Springer
ISBN: 3540466797
Category : Mathematics
Languages : en
Pages : 242
Book Description
Publisher: Springer
ISBN: 3540466797
Category : Mathematics
Languages : en
Pages : 242
Book Description
Nonlinear Semigroups, Partial Differential Equations and Attractors
Author: Tepper L. Gill
Publisher:
ISBN: 9783662189238
Category :
Languages : en
Pages : 248
Book Description
Publisher:
ISBN: 9783662189238
Category :
Languages : en
Pages : 248
Book Description
Attractors for Semigroups and Evolution Equations
Author: Olga A. Ladyzhenskaya
Publisher: Cambridge University Press
ISBN: 1009229826
Category : Mathematics
Languages : en
Pages : 97
Book Description
First published 1992; Re-issued 2008; Reprinted with Introduction 2022.
Publisher: Cambridge University Press
ISBN: 1009229826
Category : Mathematics
Languages : en
Pages : 97
Book Description
First published 1992; Re-issued 2008; Reprinted with Introduction 2022.
Nonlinear Semigroups, Partial Differential Equations, and Attractors
Nonlinear Semigroups, Partial Differential Equations, and Attractors
Author: Tepper L. Gill
Publisher: Springer Verlag
ISBN: 9780387177410
Category : Mathematics
Languages : en
Pages : 185
Book Description
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Publisher: Springer Verlag
ISBN: 9780387177410
Category : Mathematics
Languages : en
Pages : 185
Book Description
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
Author: Peter D. Miller
Publisher: Springer Nature
ISBN: 1493998064
Category : Mathematics
Languages : en
Pages : 530
Book Description
This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Publisher: Springer Nature
ISBN: 1493998064
Category : Mathematics
Languages : en
Pages : 530
Book Description
This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Attractors for Equations of Mathematical Physics
Author: Vladimir V. Chepyzhov
Publisher: American Mathematical Soc.
ISBN: 0821829505
Category : Mathematics
Languages : en
Pages : 377
Book Description
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821829505
Category : Mathematics
Languages : en
Pages : 377
Book Description
One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.
Dimensions, Embeddings, and Attractors
Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 1139495186
Category : Mathematics
Languages : en
Pages : 219
Book Description
This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.
Publisher: Cambridge University Press
ISBN: 1139495186
Category : Mathematics
Languages : en
Pages : 219
Book Description
This accessible research monograph investigates how 'finite-dimensional' sets can be embedded into finite-dimensional Euclidean spaces. The first part brings together a number of abstract embedding results, and provides a unified treatment of four definitions of dimension that arise in disparate fields: Lebesgue covering dimension (from classical 'dimension theory'), Hausdorff dimension (from geometric measure theory), upper box-counting dimension (from dynamical systems), and Assouad dimension (from the theory of metric spaces). These abstract embedding results are applied in the second part of the book to the finite-dimensional global attractors that arise in certain infinite-dimensional dynamical systems, deducing practical consequences from the existence of such attractors: a version of the Takens time-delay embedding theorem valid in spatially extended systems, and a result on parametrisation by point values. This book will appeal to all researchers with an interest in dimension theory, particularly those working in dynamical systems.
Probability Theory on Vector Spaces IV
Author: Stamatis Cambanis
Publisher: Springer
ISBN: 354048244X
Category : Mathematics
Languages : en
Pages : 435
Book Description
Publisher: Springer
ISBN: 354048244X
Category : Mathematics
Languages : en
Pages : 435
Book Description