Noncommutative Localization in Algebra and Topology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Noncommutative Localization in Algebra and Topology PDF full book. Access full book title Noncommutative Localization in Algebra and Topology by Andrew Ranicki. Download full books in PDF and EPUB format.

Noncommutative Localization in Algebra and Topology

Noncommutative Localization in Algebra and Topology PDF Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332

Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.

Noncommutative Localization in Algebra and Topology

Noncommutative Localization in Algebra and Topology PDF Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332

Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.

Noncommutative Geometry

Noncommutative Geometry PDF Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364

Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Non-Commutative Localization in Algebra and Topology

Non-Commutative Localization in Algebra and Topology PDF Author: Department of Mathematics and Statistics Andrew Ranicki
Publisher:
ISBN: 9781107362826
Category : MATHEMATICS
Languages : en
Pages : 329

Book Description
An introduction to noncommutative localization and an account of the state of the art suitable for researchers and graduate students.

A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology PDF Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262

Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

An Introduction to Noncommutative Noetherian Rings

An Introduction to Noncommutative Noetherian Rings PDF Author: K. R. Goodearl
Publisher: Cambridge University Press
ISBN: 9780521545372
Category : Mathematics
Languages : en
Pages : 372

Book Description
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.

Commutative Algebra

Commutative Algebra PDF Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784

Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Banach Spaces of Continuous Functions

Banach Spaces of Continuous Functions PDF Author: Zbigniew Semadeni
Publisher:
ISBN:
Category : Banach spaces
Languages : en
Pages : 594

Book Description


Noncommutative Motives

Noncommutative Motives PDF Author: Gonçalo Tabuada
Publisher: American Mathematical Soc.
ISBN: 1470423979
Category : Mathematics
Languages : en
Pages : 127

Book Description
The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.

Almost Ring Theory

Almost Ring Theory PDF Author: Ofer Gabber
Publisher: Springer Science & Business Media
ISBN: 9783540405948
Category : Arithmetical algebraic geometry
Languages : en
Pages : 324

Book Description


Non-commutative Algebraic Geometry

Non-commutative Algebraic Geometry PDF Author: F.M.J. van Oystaeyen
Publisher: Springer
ISBN: 3540386017
Category : Mathematics
Languages : en
Pages : 408

Book Description