Author: Ursula Carow-Watamura
Publisher: World Scientific
ISBN: 9812704698
Category : Mathematics
Languages : en
Pages : 333
Book Description
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space?time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Noncommutative Geometry and Physics 2005
Author: Ursula Carow-Watamura
Publisher: World Scientific
ISBN: 9812704698
Category : Mathematics
Languages : en
Pages : 333
Book Description
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space?time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Publisher: World Scientific
ISBN: 9812704698
Category : Mathematics
Languages : en
Pages : 333
Book Description
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space?time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Quantum Field Theory and Noncommutative Geometry
Author: Ursula Carow-Watamura
Publisher: Springer Science & Business Media
ISBN: 9783540239000
Category : Mathematics
Languages : en
Pages : 316
Book Description
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
Publisher: Springer Science & Business Media
ISBN: 9783540239000
Category : Mathematics
Languages : en
Pages : 316
Book Description
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
Advances in Noncommutative Geometry
Author: Ali Chamseddine
Publisher: Springer Nature
ISBN: 3030295974
Category : Mathematics
Languages : en
Pages : 753
Book Description
This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
Publisher: Springer Nature
ISBN: 3030295974
Category : Mathematics
Languages : en
Pages : 753
Book Description
This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
Noncommutative Geometry and Particle Physics
Author: Walter D. van Suijlekom
Publisher: Springer
ISBN: 9401791627
Category : Science
Languages : en
Pages : 246
Book Description
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Publisher: Springer
ISBN: 9401791627
Category : Science
Languages : en
Pages : 246
Book Description
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
Topology and Geometry in Physics
Author: Eike Bick
Publisher: Springer
ISBN: 9783642062094
Category : Science
Languages : en
Pages : 0
Book Description
Application of the concepts and methods of topology and geometry have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, gravity and particle physics. This book can be considered an advanced textbook on modern applications and recent developments in these fields of physical research. Written as a set of largely self-contained extensive lectures, the book gives an introduction to topological concepts in gauge theories, BRST quantization, chiral anomalies, sypersymmetric solitons and noncommutative geometry. It will be of benefit to postgraduate students, educating newcomers to the field and lecturers looking for advanced material.
Publisher: Springer
ISBN: 9783642062094
Category : Science
Languages : en
Pages : 0
Book Description
Application of the concepts and methods of topology and geometry have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, gravity and particle physics. This book can be considered an advanced textbook on modern applications and recent developments in these fields of physical research. Written as a set of largely self-contained extensive lectures, the book gives an introduction to topological concepts in gauge theories, BRST quantization, chiral anomalies, sypersymmetric solitons and noncommutative geometry. It will be of benefit to postgraduate students, educating newcomers to the field and lecturers looking for advanced material.
Noncommutative Geometry and Physics 3
Author: Giuseppe Dito
Publisher: World Scientific
ISBN: 981442501X
Category : Mathematics
Languages : en
Pages : 537
Book Description
Noncommutative differential geometry has many actual and potential applications to several domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field.
Publisher: World Scientific
ISBN: 981442501X
Category : Mathematics
Languages : en
Pages : 537
Book Description
Noncommutative differential geometry has many actual and potential applications to several domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field.
An Invitation To Noncommutative Geometry
Author: Matilde Marcolli
Publisher: World Scientific
ISBN: 9814475629
Category : Science
Languages : en
Pages : 515
Book Description
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.
Publisher: World Scientific
ISBN: 9814475629
Category : Science
Languages : en
Pages : 515
Book Description
This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.
Elements of Noncommutative Geometry
Author: Jose M. Gracia-Bondia
Publisher: Springer Science & Business Media
ISBN: 1461200059
Category : Mathematics
Languages : en
Pages : 692
Book Description
Publisher: Springer Science & Business Media
ISBN: 1461200059
Category : Mathematics
Languages : en
Pages : 692
Book Description
Noncommutative Geometry
Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Geometry of Lie Groups
Author: B. Rosenfeld
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : en
Pages : 424
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.
Publisher: Springer Science & Business Media
ISBN: 9780792343905
Category : Mathematics
Languages : en
Pages : 424
Book Description
This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.