Author: Michael Grossman
Publisher: Non-Newtonian Calculus
ISBN: 9780912938011
Category : Mathematics
Languages : en
Pages : 108
Book Description
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Non-Newtonian Calculus
Author: Michael Grossman
Publisher: Non-Newtonian Calculus
ISBN: 9780912938011
Category : Mathematics
Languages : en
Pages : 108
Book Description
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Publisher: Non-Newtonian Calculus
ISBN: 9780912938011
Category : Mathematics
Languages : en
Pages : 108
Book Description
The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Non-Diophantine Arithmetics in Mathematics, Physics and Psychology
Author: Mark Burgin
Publisher: World Scientific Publishing Company
ISBN: 9789811214301
Category :
Languages : en
Pages : 800
Book Description
For a long time, all thought there was only one geometry -- Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications of mathematics.A similar event happened in arithmetic in the 20th century. Even longer than with geometry, all thought there was only one conventional arithmetic of natural numbers -- the Diophantine arithmetic, in which 2+2=4 and 1+1=2. It is natural to call the conventional arithmetic by the name Diophantine arithmetic due to the important contributions to arithmetic by Diophantus. Nevertheless, in the 20th century, many non-Diophantine arithmetics were discovered, in some of which 2+2=5 or 1+1=3. It took more than two millennia to do this. This discovery has even more implications than the discovery of new geometries because all people use arithmetic.This book provides a detailed exposition of the theory of non-Diophantine arithmetics and its various applications. Reading this book, the reader will see that on the one hand, non-Diophantine arithmetics continue the ancient tradition of operating with numbers while on the other hand, they introduce extremely original and innovative ideas.
Publisher: World Scientific Publishing Company
ISBN: 9789811214301
Category :
Languages : en
Pages : 800
Book Description
For a long time, all thought there was only one geometry -- Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications of mathematics.A similar event happened in arithmetic in the 20th century. Even longer than with geometry, all thought there was only one conventional arithmetic of natural numbers -- the Diophantine arithmetic, in which 2+2=4 and 1+1=2. It is natural to call the conventional arithmetic by the name Diophantine arithmetic due to the important contributions to arithmetic by Diophantus. Nevertheless, in the 20th century, many non-Diophantine arithmetics were discovered, in some of which 2+2=5 or 1+1=3. It took more than two millennia to do this. This discovery has even more implications than the discovery of new geometries because all people use arithmetic.This book provides a detailed exposition of the theory of non-Diophantine arithmetics and its various applications. Reading this book, the reader will see that on the one hand, non-Diophantine arithmetics continue the ancient tradition of operating with numbers while on the other hand, they introduce extremely original and innovative ideas.
Non-diophantine Arithmetics In Mathematics, Physics And Psychology
Author: Mark Burgin
Publisher: World Scientific
ISBN: 9811214328
Category : Mathematics
Languages : en
Pages : 960
Book Description
For a long time, all thought there was only one geometry — Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications of mathematics.A similar event happened in arithmetic in the 20th century. Even longer than with geometry, all thought there was only one conventional arithmetic of natural numbers — the Diophantine arithmetic, in which 2+2=4 and 1+1=2. It is natural to call the conventional arithmetic by the name Diophantine arithmetic due to the important contributions to arithmetic by Diophantus. Nevertheless, in the 20th century, many non-Diophantine arithmetics were discovered, in some of which 2+2=5 or 1+1=3. It took more than two millennia to do this. This discovery has even more implications than the discovery of new geometries because all people use arithmetic.This book provides a detailed exposition of the theory of non-Diophantine arithmetics and its various applications. Reading this book, the reader will see that on the one hand, non-Diophantine arithmetics continue the ancient tradition of operating with numbers while on the other hand, they introduce extremely original and innovative ideas.
Publisher: World Scientific
ISBN: 9811214328
Category : Mathematics
Languages : en
Pages : 960
Book Description
For a long time, all thought there was only one geometry — Euclidean geometry. Nevertheless, in the 19th century, many non-Euclidean geometries were discovered. It took almost two millennia to do this. This was the major mathematical discovery and advancement of the 19th century, which changed understanding of mathematics and the work of mathematicians providing innovative insights and tools for mathematical research and applications of mathematics.A similar event happened in arithmetic in the 20th century. Even longer than with geometry, all thought there was only one conventional arithmetic of natural numbers — the Diophantine arithmetic, in which 2+2=4 and 1+1=2. It is natural to call the conventional arithmetic by the name Diophantine arithmetic due to the important contributions to arithmetic by Diophantus. Nevertheless, in the 20th century, many non-Diophantine arithmetics were discovered, in some of which 2+2=5 or 1+1=3. It took more than two millennia to do this. This discovery has even more implications than the discovery of new geometries because all people use arithmetic.This book provides a detailed exposition of the theory of non-Diophantine arithmetics and its various applications. Reading this book, the reader will see that on the one hand, non-Diophantine arithmetics continue the ancient tradition of operating with numbers while on the other hand, they introduce extremely original and innovative ideas.
Kindergarten of Fractional Calculus
Author: Shantanu Das
Publisher: Cambridge Scholars Publishing
ISBN: 1527547116
Category : Mathematics
Languages : en
Pages : 533
Book Description
This book presents a simplified deliberation of fractional calculus, which will appeal not only to beginners, but also to various applied science mathematicians and engineering researchers. The text develops the ideas behind this new field of mathematics, beginning at the most elementary level, before discussing its actual applications in different areas of science and engineering. This book shows that the simple, classical laws based on Newtonian calculus, which work quite well under limiting and idealized conditions, are not of much use in describing the dynamics of actual systems. As such, the application of non-Newtonian, or generalized, calculus in the governing equations, allows the order of differentiation and integration to take on non-integer values.
Publisher: Cambridge Scholars Publishing
ISBN: 1527547116
Category : Mathematics
Languages : en
Pages : 533
Book Description
This book presents a simplified deliberation of fractional calculus, which will appeal not only to beginners, but also to various applied science mathematicians and engineering researchers. The text develops the ideas behind this new field of mathematics, beginning at the most elementary level, before discussing its actual applications in different areas of science and engineering. This book shows that the simple, classical laws based on Newtonian calculus, which work quite well under limiting and idealized conditions, are not of much use in describing the dynamics of actual systems. As such, the application of non-Newtonian, or generalized, calculus in the governing equations, allows the order of differentiation and integration to take on non-integer values.
The First Systems of Weighted Differential and Integral Calculus
Author: Jane Grossman
Publisher: Non-Newtonian Calculus
ISBN: 9780977117017
Category : Mathematics
Languages : en
Pages : 68
Book Description
This book explains how each non-Newtonian calculus, as well as the classical calculus of Newton and Leibniz, can be 'weighted' in a natural way. In each of these weighted calculi, a weighted average (of functions) plays a central role. The weighted calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus. It may well be that they can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Publisher: Non-Newtonian Calculus
ISBN: 9780977117017
Category : Mathematics
Languages : en
Pages : 68
Book Description
This book explains how each non-Newtonian calculus, as well as the classical calculus of Newton and Leibniz, can be 'weighted' in a natural way. In each of these weighted calculi, a weighted average (of functions) plays a central role. The weighted calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus. It may well be that they can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.
Bartholomew and the Oobleck
Author: Dr. Seuss
Publisher: RH Childrens Books
ISBN: 0385379323
Category : Juvenile Fiction
Languages : en
Pages : 29
Book Description
Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.
Publisher: RH Childrens Books
ISBN: 0385379323
Category : Juvenile Fiction
Languages : en
Pages : 29
Book Description
Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.
General Relativity Without Calculus
Author: Jose Natario
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133
Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Rheology and Non-Newtonian Fluids
Author: Fridtjov Irgens
Publisher: Springer Science & Business Media
ISBN: 3319010530
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
Publisher: Springer Science & Business Media
ISBN: 3319010530
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
Quantum Variational Calculus
Author: Agnieszka B. Malinowska
Publisher: Springer Science & Business Media
ISBN: 3319027476
Category : Mathematics
Languages : en
Pages : 96
Book Description
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations for experienced researchers but may be used as an advanced textbook by graduate students and even ambitious undergraduates as well. The explanations in the book are detailed to capture the interest of the curious reader, and complete to provide the necessary background material needed to go further into the subject and explore the rich research literature, motivating further research activity in the area.
Publisher: Springer Science & Business Media
ISBN: 3319027476
Category : Mathematics
Languages : en
Pages : 96
Book Description
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstraction that in many applications is far from reality. The Hahn quantum calculus helps to bridge the gap between the two families of models: continuous and discrete. Quantum Variational Calculus is self-contained and unified in presentation. It provides an opportunity for an introduction to the quantum calculus of variations for experienced researchers but may be used as an advanced textbook by graduate students and even ambitious undergraduates as well. The explanations in the book are detailed to capture the interest of the curious reader, and complete to provide the necessary background material needed to go further into the subject and explore the rich research literature, motivating further research activity in the area.
Multivariable Mathematics
Author: Theodore Shifrin
Publisher: John Wiley & Sons
ISBN: 047152638X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.
Publisher: John Wiley & Sons
ISBN: 047152638X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.