Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images PDF full book. Access full book title Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images by Chandan Ganesh Bangalore Yogananda. Download full books in PDF and EPUB format.

Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images

Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images PDF Author: Chandan Ganesh Bangalore Yogananda
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 120

Book Description
Gliomas account for the most common malignant primary brain tumors in both pediatric and adult populations. They arise from glial cells and are divided into low grade and high-grade gliomas with significant differences in patient survival. Patients with aggressive high-grade gliomas have life expectancies of less than 2 years. Glioblastoma (GBM) are aggressive brain tumors classified by the world health organization (WHO) as stage IV brain cancer. The overall survival for GBM patients is poor and is in the range of 12 to 15 months. These tumors are typically treated by surgery, followed by radiotherapy and chemotherapy. Gliomas often consist of active tumor tissue, necrotic tissue, and surrounding edema. Magnetic Resonance Imaging (MRI) is the most commonly used modality to assess brain tumors because of its superior soft tissue contrast. MRI tumor segmentation is used to identify the subcomponents as enhancing, necrotic or edematous tissue. Due to the heterogeneity and tissue relaxation differences in these subcomponents, multi-parametric (or multi-contrast) MRI is often used for accurate segmentation. Manual brain tumor segmentation is a challenging and tedious task for human experts due to the variability of tumor appearance, unclear borders of the tumor and the need to evaluate multiple MR images with different contrasts simultaneously. In addition, manual segmentation is often prone to significant intra- and inter-rater variability. To address these issues, Chapter 2 of my dissertation aims at designing and developing a highly accurate, 3D Dense-Unet Convolutional Neural Network (CNN) for segmenting brain tumors into subcomponents that can easily be incorporated into a clinical workflow.Primary brain tumors demonstrate broad variations in imaging features, response to therapy, and prognosis. It has become evident that this heterogeneity is associated with specific molecular and genetic profiles. For example, isocitrate dehydrogenase 1 and 2 (IDH 1/2) mutated gliomas demonstrate increased survival compared to wild-type gliomas with the same histologic grade.Identification of the IDH mutation status as a marker for therapy and prognosis is considered one of the most important recent discoveries in brain glioma biology. Additionally, 1p/19q co-deletion and O6-methyl guanine-DNA methyl transferase (MGMT) promoter methylation is associated with differences in response to specific chemoradiation regimens. Currently, the only reliable way of determining a molecular marker is by obtaining glioma tissue either via an invasive brain biopsy or following open surgical resection. Although the molecular profiling of gliomas is now a routine part of the evaluation of specimens obtained at biopsy or tumor resection, it would be helpful to have this information prior to surgery. In some cases, the information would aid in planning the extent of tumor resection. In others, for tumors in locations where resection is not possible, and the risk of a biopsy is high, accurate delineation of the molecular and genetic profile of the tumor might be used to guide empiric treatment with radiation and/or chemotherapy. The ability to noninvasively profile these molecular markers using only T2w MRI has significant implications in determining therapy, predicting prognosis, and feasible clinical translation. Thus, Chapters 3, 4 and 5 of my dissertation focuses on developing and evaluating deep learning algorithms for noninvasive profiling of molecular markers in brain gliomas using T2w MRI only. This includes developing highly accurate fully automated deep learning networks for, (i) classification of IDH mutation status (Chapter 3), (ii) classification of 1p/19q co-deletion status (Chapter 4), and (iii)classification of MGMT promoter status in Brain Gliomas (Chapter 5).An important caveat of using MRI is the effects of degradation on the images, such as motion artifact, and in turn, on the performance of deep learning-based algorithms. Motion artifacts are an especially pervasive source of MR image quality degradation and can be due to gross patient movements, as well as cardiac and respiratory motion. In clinical practice, these artifacts can interfere with diagnostic interpretation, necessitating repeat imaging. The effect of motion artifacts on medical images and deep learning based molecular profiling algorithms has not been studied systematically. It is likely that motion corruption will also lead to reduced performance of deep learning algorithms in classifying brain tumor images.Deep learning based brain tumor segmentation and molecular profiling algorithms generally perform well only on specific datasets. Clinical translation of such algorithms has the potential to reduce interobserver variability, and improve planning for radiation therapy, improve speed &response to therapy. Although these algorithms perform very well on several publicly available datasets, their generalization to clinical datasets or tasks have been poor, preventing easy clinical translation. Thus, Chapter 6 of my dissertation focuses on evaluating the performance of the molecular profiling algorithms on motion corrupted, motion corrected and clinical T2w MRI. This includes, (i) evaluating the effect of motion corruption on the molecular profiling algorithms, (ii) determining if deep learning-based motion correction can recover the performance of these algorithms to levels similar to non-corrupted images, and (iii) evaluating the performance of these algorithms on clinical T2w MRI before & after motion correction. This chapter is an investigation on the effects of induced motion artifact on deep learning-based molecular classification, and the relative importance of robust correction methods in recovering the accuracies for potential clinical applicability. Deep-learning studies typically require a very large amount of data to achieve good performance. The number of subjects available from the TCIA database is relatively small when compared to the sample sizes typically required for deep learning. Despite this caveat, the data are representative of real-world clinical experience, with multiparametric MR images from multiple institutions, and represents one of the largest publicly available brain tumor databases.Additionally, the acquisition parameters and imaging vendor platforms are diverse across the imaging centers contributing data to TCIA. This study provides a framework for training,evaluating, and benchmarking any new artifact-correction architectures for potential insertion into a workflow. Although our results show promise for expeditious clinical translation, it will be essential to train and validate the algorithms using additional independent datasets. Thus, Chapter 7 of my dissertation discusses the limitations and possible future directions for this work.

Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images

Non-invasive Profiling of Molecular Markers in Brain Gliomas Using Deep Learning and Magnetic Resonance Images PDF Author: Chandan Ganesh Bangalore Yogananda
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 120

Book Description
Gliomas account for the most common malignant primary brain tumors in both pediatric and adult populations. They arise from glial cells and are divided into low grade and high-grade gliomas with significant differences in patient survival. Patients with aggressive high-grade gliomas have life expectancies of less than 2 years. Glioblastoma (GBM) are aggressive brain tumors classified by the world health organization (WHO) as stage IV brain cancer. The overall survival for GBM patients is poor and is in the range of 12 to 15 months. These tumors are typically treated by surgery, followed by radiotherapy and chemotherapy. Gliomas often consist of active tumor tissue, necrotic tissue, and surrounding edema. Magnetic Resonance Imaging (MRI) is the most commonly used modality to assess brain tumors because of its superior soft tissue contrast. MRI tumor segmentation is used to identify the subcomponents as enhancing, necrotic or edematous tissue. Due to the heterogeneity and tissue relaxation differences in these subcomponents, multi-parametric (or multi-contrast) MRI is often used for accurate segmentation. Manual brain tumor segmentation is a challenging and tedious task for human experts due to the variability of tumor appearance, unclear borders of the tumor and the need to evaluate multiple MR images with different contrasts simultaneously. In addition, manual segmentation is often prone to significant intra- and inter-rater variability. To address these issues, Chapter 2 of my dissertation aims at designing and developing a highly accurate, 3D Dense-Unet Convolutional Neural Network (CNN) for segmenting brain tumors into subcomponents that can easily be incorporated into a clinical workflow.Primary brain tumors demonstrate broad variations in imaging features, response to therapy, and prognosis. It has become evident that this heterogeneity is associated with specific molecular and genetic profiles. For example, isocitrate dehydrogenase 1 and 2 (IDH 1/2) mutated gliomas demonstrate increased survival compared to wild-type gliomas with the same histologic grade.Identification of the IDH mutation status as a marker for therapy and prognosis is considered one of the most important recent discoveries in brain glioma biology. Additionally, 1p/19q co-deletion and O6-methyl guanine-DNA methyl transferase (MGMT) promoter methylation is associated with differences in response to specific chemoradiation regimens. Currently, the only reliable way of determining a molecular marker is by obtaining glioma tissue either via an invasive brain biopsy or following open surgical resection. Although the molecular profiling of gliomas is now a routine part of the evaluation of specimens obtained at biopsy or tumor resection, it would be helpful to have this information prior to surgery. In some cases, the information would aid in planning the extent of tumor resection. In others, for tumors in locations where resection is not possible, and the risk of a biopsy is high, accurate delineation of the molecular and genetic profile of the tumor might be used to guide empiric treatment with radiation and/or chemotherapy. The ability to noninvasively profile these molecular markers using only T2w MRI has significant implications in determining therapy, predicting prognosis, and feasible clinical translation. Thus, Chapters 3, 4 and 5 of my dissertation focuses on developing and evaluating deep learning algorithms for noninvasive profiling of molecular markers in brain gliomas using T2w MRI only. This includes developing highly accurate fully automated deep learning networks for, (i) classification of IDH mutation status (Chapter 3), (ii) classification of 1p/19q co-deletion status (Chapter 4), and (iii)classification of MGMT promoter status in Brain Gliomas (Chapter 5).An important caveat of using MRI is the effects of degradation on the images, such as motion artifact, and in turn, on the performance of deep learning-based algorithms. Motion artifacts are an especially pervasive source of MR image quality degradation and can be due to gross patient movements, as well as cardiac and respiratory motion. In clinical practice, these artifacts can interfere with diagnostic interpretation, necessitating repeat imaging. The effect of motion artifacts on medical images and deep learning based molecular profiling algorithms has not been studied systematically. It is likely that motion corruption will also lead to reduced performance of deep learning algorithms in classifying brain tumor images.Deep learning based brain tumor segmentation and molecular profiling algorithms generally perform well only on specific datasets. Clinical translation of such algorithms has the potential to reduce interobserver variability, and improve planning for radiation therapy, improve speed &response to therapy. Although these algorithms perform very well on several publicly available datasets, their generalization to clinical datasets or tasks have been poor, preventing easy clinical translation. Thus, Chapter 6 of my dissertation focuses on evaluating the performance of the molecular profiling algorithms on motion corrupted, motion corrected and clinical T2w MRI. This includes, (i) evaluating the effect of motion corruption on the molecular profiling algorithms, (ii) determining if deep learning-based motion correction can recover the performance of these algorithms to levels similar to non-corrupted images, and (iii) evaluating the performance of these algorithms on clinical T2w MRI before & after motion correction. This chapter is an investigation on the effects of induced motion artifact on deep learning-based molecular classification, and the relative importance of robust correction methods in recovering the accuracies for potential clinical applicability. Deep-learning studies typically require a very large amount of data to achieve good performance. The number of subjects available from the TCIA database is relatively small when compared to the sample sizes typically required for deep learning. Despite this caveat, the data are representative of real-world clinical experience, with multiparametric MR images from multiple institutions, and represents one of the largest publicly available brain tumor databases.Additionally, the acquisition parameters and imaging vendor platforms are diverse across the imaging centers contributing data to TCIA. This study provides a framework for training,evaluating, and benchmarking any new artifact-correction architectures for potential insertion into a workflow. Although our results show promise for expeditious clinical translation, it will be essential to train and validate the algorithms using additional independent datasets. Thus, Chapter 7 of my dissertation discusses the limitations and possible future directions for this work.

Glioma Imaging

Glioma Imaging PDF Author: Whitney B. Pope
Publisher: Springer Nature
ISBN: 3030273598
Category : Medical
Languages : en
Pages : 286

Book Description
This book covers physiologic, metabolic and molecular imaging for gliomas. Gliomas are the most common primary brain tumors. Imaging is critical for glioma management because of its ability to noninvasively define the anatomic location and extent of disease. While conventional MRI is used to guide current treatments, multiple studies suggest molecular features of gliomas may be identified with noninvasive imaging, including physiologic MRI and amino acid positron emission tomography (PET). These advanced imaging techniques have the promise to help elucidate underlying tumor biology and provide important information that could be integrated into routine clinical practice. The text outlines current clinical practice including common scenarios in which imaging interpretation impacts patient management. Gaps in knowledge and potential areas of advancement based on the application of more experimental imaging techniques will be discussed. In reviewing this book, readers will learn: current standard imaging methodologies used in clinical practice for patients undergoing treatment for glioma and the implications of emerging treatment modalities including immunotherapy the theoretical basis for advanced imaging techniques including diffusion and perfusion MRI, MR spectroscopy, CEST and amino acid PET the relationship between imaging and molecular/genomic glioma features incorporated in the WHO 2016 classification update and the potential application of machine learning about the recently adopted and FDA approved standard brain tumor protocol for multicenter drug trials of the gaps in knowledge that impede optimal patient management and the cutting edge imaging techniques that could address these deficits

Radiomics and Radiogenomics

Radiomics and Radiogenomics PDF Author: Ruijiang Li
Publisher: CRC Press
ISBN: 1351208268
Category : Science
Languages : en
Pages : 420

Book Description
Radiomics and Radiogenomics: Technical Basis and Clinical Applications provides a first summary of the overlapping fields of radiomics and radiogenomics, showcasing how they are being used to evaluate disease characteristics and correlate with treatment response and patient prognosis. It explains the fundamental principles, technical bases, and clinical applications with a focus on oncology. The book’s expert authors present computational approaches for extracting imaging features that help to detect and characterize disease tissues for improving diagnosis, prognosis, and evaluation of therapy response. This book is intended for audiences including imaging scientists, medical physicists, as well as medical professionals and specialists such as diagnostic radiologists, radiation oncologists, and medical oncologists. Features Provides a first complete overview of the technical underpinnings and clinical applications of radiomics and radiogenomics Shows how they are improving diagnostic and prognostic decisions with greater efficacy Discusses the image informatics, quantitative imaging, feature extraction, predictive modeling, software tools, and other key areas Covers applications in oncology and beyond, covering all major disease sites in separate chapters Includes an introduction to basic principles and discussion of emerging research directions with a roadmap to clinical translation

Brain Tumor MRI Image Segmentation Using Deep Learning Techniques

Brain Tumor MRI Image Segmentation Using Deep Learning Techniques PDF Author: Jyotismita Chaki
Publisher: Academic Press
ISBN: 0323983952
Category : Science
Languages : en
Pages : 260

Book Description
Brain Tumor MRI Image Segmentation Using Deep Learning Techniques offers a description of deep learning approaches used for the segmentation of brain tumors. The book demonstrates core concepts of deep learning algorithms by using diagrams, data tables and examples to illustrate brain tumor segmentation. After introducing basic concepts of deep learning-based brain tumor segmentation, sections cover techniques for modeling, segmentation and properties. A focus is placed on the application of different types of convolutional neural networks, like single path, multi path, fully convolutional network, cascade convolutional neural networks, Long Short-Term Memory - Recurrent Neural Network and Gated Recurrent Units, and more. The book also highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in brain tumor segmentation. Provides readers with an understanding of deep learning-based approaches in the field of brain tumor segmentation, including preprocessing techniques Integrates recent advancements in the field, including the transformation of low-resolution brain tumor images into super-resolution images using deep learning-based methods, single path Convolutional Neural Network based brain tumor segmentation, and much more Includes coverage of Long Short-Term Memory (LSTM) based Recurrent Neural Network (RNN), Gated Recurrent Units (GRU) based Recurrent Neural Network (RNN), Generative Adversarial Networks (GAN), Auto Encoder based brain tumor segmentation, and Ensemble deep learning Model based brain tumor segmentation Covers research Issues and the future of deep learning-based brain tumor segmentation

Radiomics and Radiogenomics in Neuro-oncology

Radiomics and Radiogenomics in Neuro-oncology PDF Author: Hassan Mohy-ud-Din
Publisher: Springer Nature
ISBN: 3030401243
Category : Computers
Languages : en
Pages : 100

Book Description
This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.

Oncology of CNS Tumors

Oncology of CNS Tumors PDF Author: Jörg-Christian Tonn
Publisher: Springer Science & Business Media
ISBN: 3642028748
Category : Medical
Languages : en
Pages : 776

Book Description
Knowledge about the etiology and diagnosis as well as treatment concepts of neu- oncologic diseases is rapidly growing. This turnover of knowledge makes it dif? cult for the physician engaged in the treatment to keep up to date with current therapies. This book sets out to close the gap and pursues several innovative concepts. As a comprehensive text on neuro-oncology, its chapters are interconnected, but at the same time some chapters or subdivisions are so thoroughly assembled that the whole volume gives the impression of several books combined into one. Neuropathology is treated in an extensive and clearly structured section. The int- ested reader ? nds for each tumor entity the latest well-referenced consensus rega- ing histologic and molecular pathology. Through this “book-in-the-book” concept, information on neuropathology is readily at hand in a concise form and without ov- loading the single chapters. Pediatric neuro-oncology differs in many entities from tumors in adult patients; also, certain tumors of the CNS are typically or mainly found only in the child. Therefore, pediatric neuro-oncology was granted its own, book-like section. Tumor entities that are treated differently in children and adults are included both in the pediatric neuro-oncology section and in the general section. Entities that typically occur only in the child and adolescent are found in the pediatric section in order to avoid redundancies.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning PDF Author: Ke-Lin Du
Publisher: Springer Science & Business Media
ISBN: 1447155718
Category : Technology & Engineering
Languages : en
Pages : 834

Book Description
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

MRI

MRI PDF Author: Brian M. Dale
Publisher: John Wiley & Sons
ISBN: 1119013038
Category : Medical
Languages : en
Pages : 246

Book Description
This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update. Accessible introductory guide from renowned teachers in the field Provides a concise yet thorough introduction for MRI focusing on fundamental physics, pulse sequences, and clinical applications without presenting advanced math Takes a practical approach, including up-to-date protocols, and supports technical concepts with thorough explanations and illustrations Highlights sections that are directly relevant to radiology board exams Presents new information on the latest scan techniques and applications including 3 Tesla whole body scanners, safety issues, and the nephrotoxic effects of gadolinium-based contrast media

Brain Tumor Imaging

Brain Tumor Imaging PDF Author: Elke Hattingen
Publisher: Springer
ISBN: 3642450407
Category : Medical
Languages : en
Pages : 166

Book Description
This book describes the basics, the challenges and the limitations of state of the art brain tumor imaging and examines in detail its impact on diagnosis and treatment monitoring. It opens with an introduction to the clinically relevant physical principles of brain imaging. Since MR methodology plays a crucial role in brain imaging, the fundamental aspects of MR spectroscopy, MR perfusion and diffusion-weighted MR methods are described, focusing on the specific demands of brain tumor imaging. The potential and the limits of new imaging methodology are carefully addressed and compared to conventional MR imaging. In the main part of the book, the most important imaging criteria for the differential diagnosis of solid and necrotic brain tumors are delineated and illustrated in examples. A closing section is devoted to the use of MR methods for the monitoring of brain tumor therapy. The book is intended for radiologists, neurologists, neurosurgeons, oncologists and other scientists in the biomedical field with an interest in neuro-oncology.

Deep Learning for Cancer Diagnosis

Deep Learning for Cancer Diagnosis PDF Author: Utku Kose
Publisher: Springer Nature
ISBN: 9811563217
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
This book explores various applications of deep learning to the diagnosis of cancer,while also outlining the future face of deep learning-assisted cancer diagnostics. As is commonly known, artificial intelligence has paved the way for countless new solutions in the field of medicine. In this context, deep learning is a recent and remarkable sub-field, which can effectively cope with huge amounts of data and deliver more accurate results. As a vital research area, medical diagnosis is among those in which deep learning-oriented solutions are often employed. Accordingly, the objective of this book is to highlight recent advanced applications of deep learning for diagnosing different types of cancer. The target audience includes scientists, experts, MSc and PhD students, postdocs, and anyone interested in the subjects discussed. The book can be used as a reference work to support courses on artificial intelligence, medical and biomedicaleducation.