Non-equilibrium Dynamics of One-Dimensional Bose Gases

Non-equilibrium Dynamics of One-Dimensional Bose Gases PDF Author: Tim Langen
Publisher: Springer
ISBN: 3319185640
Category : Science
Languages : en
Pages : 154

Book Description
This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.

Non-Equilibrium Dynamics Beyond Dephasing

Non-Equilibrium Dynamics Beyond Dephasing PDF Author: Bernhard Rauer
Publisher: Springer
ISBN: 3030182363
Category : Science
Languages : en
Pages : 128

Book Description
Cold atomic gases trapped and manipulated on atom chips allow the realization of seminal one-dimensional (1d) quantum many-body problems in an isolated and well controlled environment. In this context, this thesis presents an extensive experimental study of non-equilibrium dynamics in 1d Bose gases, with a focus on processes that go beyond simple dephasing dynamics. It reports on the observation of recurrences of coherence in the post-quench dynamics of a pair of 1d Bose gases and presents a detailed study of their decay. The latter represents the first observation of phonon-phonon scattering in these systems. Furthermore, the thesis investigates a novel cooling mechanism occurring in Bose gases subjected to a uniform loss of particles. Together, the results presented show a wide range of non-equilibrium phenomena occurring in 1d Bose gases and establish them as an ideal testbed for many-body physics beyond equilibrium.

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics PDF Author: Nick P Proukakis
Publisher: World Scientific
ISBN: 1908979704
Category : Science
Languages : en
Pages : 579

Book Description
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a

Non-equilibrium Dynamics of a Trapped One-dimensional Bose Gas

Non-equilibrium Dynamics of a Trapped One-dimensional Bose Gas PDF Author: Andrii Gudyma
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
A study of breathing oscillations of a one-dimensional trapped interacting Bose gas is presented. Oscillations are initiated by an instantaneous change of the trapping frequency. In the thesis a 1D quantum Bose gas in a parabolic trap at zero temperature is considered, and it is explained, analytically and numerically, how the oscillation frequency depends on the number of particles, their repulsive interaction, and the trap parameters. We have focused on the many-body spectral description, using the sum rules approximation. The oscillation frequency is identified as the energy difference between the ground state and a particular excited state. The existence of three regimes is demonstrated, namely the Tonks regime, the Thomas-Fermi regime and the Gaussian regime. The transition from the Tonks to the Thomas-Fermi regime is described in the terms of the local density approximation (LDA). For the description of the transition from the Thomas-Fermi to the Gaussian regime the Hartree approximation is used. In both cases the parameters where the transitions happen are found. The extensive diffusion Monte Carlo simulations for a gas containing up to N = 25 particles is performed. As the number of particles increases, predictions from the simulations converge to the ones from the Hartree and LDA in the corresponding regimes. This makes the results for the breathing mode frequency applicable for arbitrary values of the particle number and interaction. The analysis is completed with the finite N perturbative results in the limiting cases. The theory predicts the reentrant behavior of the breathing mode frequency when moving from the Tonks to the Gaussian regime and fully explains the recent experiment of the Innsbruck group.

Probing Non-Equilibrium Dynamics in Two-Dimensional Quantum Gases

Probing Non-Equilibrium Dynamics in Two-Dimensional Quantum Gases PDF Author: Cheng-An Chen
Publisher: Springer Nature
ISBN: 3031133552
Category : Science
Languages : en
Pages : 151

Book Description
This thesis explores the physics of non-equilibrium quantum dynamics in homogeneous two-dimensional (2D) quantum gases. Ultracold quantum gases driven out of equilibrium have been prominent platforms for studying quantum many-body physics. However, probing non-equilibrium dynamics in conventionally trapped, inhomogeneous atomic quantum gases has been a challenging task because coexisting mass transport and spreading of quantum correlations often complicate experimental analyses. In this work, the author solves this technical hurdle by producing ultracold cesium atoms in a quasi-2D optical box potential. The exquisite optical trap allows one to remove density inhomogeneity in a degenerate quantum gas and control its dimensionality. The author also details the development of a high-resolution, in situ imaging technique to monitor the evolution of collective excitations and quantum transport down to atomic shot-noise, and at the length scale of elementary collective excitations. Meanwhile, tunable Feshbach resonances in ultracold cesium atoms permit precise and dynamical control of interactions with high temporal and even spatial resolutions. By employing these state-of-the-art techniques, the author performed interaction quenches to control the generation and evolution of quasiparticles in quantum gases, presenting the first direct measurement of quantum entanglement between interaction quench generated quasiparticle pairs in an atomic superfluid. Quenching to attractive interactions, this work shows stimulated emission of quasiparticles, leading to amplified density waves and fragmentation, forming 2D matter-wave Townes solitons that were previously considered impossible to form in equilibrium due to their instability. This thesis unveils a set of scale-invariant and universal quench dynamics and provides unprecedented tools to explore quantum entanglement transport in a homogenous quantum gas.

Exact Methods in the Analysis of the Non-equilibrium Dynamics of Integrable Models: Application to the Study of Correlation Functions for Non-equilibrium 1D Bose Gas

Exact Methods in the Analysis of the Non-equilibrium Dynamics of Integrable Models: Application to the Study of Correlation Functions for Non-equilibrium 1D Bose Gas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this paper we study the non-equilibrium dynamics of one-dimensional Bose gas from the general perspective of the dynamics of integrable systems. After outlining and critically reviewing methods based on the inverse scattering transform, intertwining operators, q-deformed objects, and extended dynamical conformal symmetry, we focus on the form-factor based approach. Motivated by possible applications in nonlinear quantum optics and experiments with ultracold atoms, we concentrate on the regime of strong repulsive interactions. We consider dynamical evolution starting from two initial states: a condensate of particles in a state with zero momentum and a condensate of particles in a Gaussian wavepacket in real space. Combining the form-factor approach with the method of intertwining operators we develop a numerical procedure which allows explicit summation over intermediate states and analysis of the time evolution of non-local density- ensity correlation functions. In both cases we observe a tendency toward the formation of crystal-like correlations at intermediate timescales.

Non-equilibrium Dynamics of Tunnel-Coupled Superfluids

Non-equilibrium Dynamics of Tunnel-Coupled Superfluids PDF Author: Marine Pigneur
Publisher: Springer Nature
ISBN: 3030528448
Category : Science
Languages : en
Pages : 204

Book Description
The relaxation of isolated quantum many-body systems is a major unsolved problem of modern physics, which is connected to many fundamental questions. However, realizations of quantum many-body systems which are both well isolated from their environment and accessible to experimental study are scarce. In recent years, the field has experienced rapid progress, partly attributed to ultra-cold atoms. This book presents the experimental study of a relaxation phenomenon occurring in a one-dimensional bosonic Josephson junction. The system consists of two 1D quasi Bose-Einstein condensates of 87Rb, magnetically trapped on an atom chip. Using radio-frequency dressing, the author deforms a single harmonic trap, in which the atoms are initially condensed, into a double-well potential and realizes a splitting of the wave function. A large spatial separation and a tilt of the double-well enable the preparation of a broad variety of initial states by precisely adjusting the initial population and relative phase of the two wave packets, while preserving the phase coherence. By re-coupling the two wave packets, the author investigates tunneling regimes such as Josephson (plasma) oscillations and macroscopic quantum self-trapping. In both regimes, the tunneling dynamics exhibits a relaxation to a phase-locked equilibrium state contradicting theoretical predictions. The experimental results are supported with an empirical model that allows quantitative discussions according to various experimental parameters. These results illustrate how strongly the non-equilibrium dynamics differ from the equilibrium one, which is well described by thermodynamics and statistical physics.

Non-equilibrium Dynamics in Tunnel-coupled Bose Gases

Non-equilibrium Dynamics in Tunnel-coupled Bose Gases PDF Author: Yuri Daniƫl van Nieuwkerk
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Strongly Interacting Quantum Systems Out of Equilibrium

Strongly Interacting Quantum Systems Out of Equilibrium PDF Author: Thierry Giamarchi
Publisher: Oxford University Press
ISBN: 0198768168
Category : Science
Languages : en
Pages : 607

Book Description
This book presents new experimental tools and theoretical concepts of collective nonequilibrium behavior of quantum systems. The book is based on the Les Houches Summer School of August 2012, "Strongly interacting quantum systems out of equilibrium".

Equilibrium and Nonequilibrium Behaviours of 1D Bose Gases

Equilibrium and Nonequilibrium Behaviours of 1D Bose Gases PDF Author: Yiyuan Bess Fang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
One-dimensional quantum many-body systems exhibit peculiar and intriguing behaviors as a consequence of the reduced dimensionality, which enhances the effect of fluctuations and correlations. The high degree of isolation and controllability of experiments manipulating ultra-cold atomic gases allows for the experimental simulation of text-book models, for which many theory tools are available for quantitative comparison. I will present instances of such efforts carried out during my PhD thesis, namely, the studies performed to investigate the behavior of 1D Bose gas (Lieb-Liniger gas) at equilibrium and beyond. An overview of the toolbox available to date to characterize the equilibrium thermodynamics of a Lieb-Liniger gas will be shown, followed by a detailed study of the breathing mode of such a system.