Author: William A. Olsen
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 44
Book Description
Noise data were obtained with a model of an externally blown flap of the type that is currently being considered for STOL aircraft. The noise caused by impingement of the jet on the flap is much louder than the nozzle jet noise. It is especially so directly below the wing. The noise level increases as the jet velocity and flap angle are increased. The sound power level increased with the sixth power of velocity. Several physical variations to the STOL model configuration were also tested. Two such variations, a large board and a slotless curved plate wing, had the same power spectra density (Strouhal number curve) as the model.
Noise Produced by a Small-scale, Externally Blown Flap
Author: William A. Olsen
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 44
Book Description
Noise data were obtained with a model of an externally blown flap of the type that is currently being considered for STOL aircraft. The noise caused by impingement of the jet on the flap is much louder than the nozzle jet noise. It is especially so directly below the wing. The noise level increases as the jet velocity and flap angle are increased. The sound power level increased with the sixth power of velocity. Several physical variations to the STOL model configuration were also tested. Two such variations, a large board and a slotless curved plate wing, had the same power spectra density (Strouhal number curve) as the model.
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 44
Book Description
Noise data were obtained with a model of an externally blown flap of the type that is currently being considered for STOL aircraft. The noise caused by impingement of the jet on the flap is much louder than the nozzle jet noise. It is especially so directly below the wing. The noise level increases as the jet velocity and flap angle are increased. The sound power level increased with the sixth power of velocity. Several physical variations to the STOL model configuration were also tested. Two such variations, a large board and a slotless curved plate wing, had the same power spectra density (Strouhal number curve) as the model.
A Method for Calculating Externally Blown Flap Noise
Author: Martin R. Fink
Publisher:
ISBN:
Category : Flaps (Airplanes)
Languages : en
Pages : 136
Book Description
Publisher:
ISBN:
Category : Flaps (Airplanes)
Languages : en
Pages : 136
Book Description
NASA Technical Note
Monthly Catalog of United States Government Publications, Cumulative Index
Author: United States. Superintendent of Documents
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1408
Book Description
Publisher:
ISBN:
Category : United States
Languages : en
Pages : 1408
Book Description
Monthly Catalog of United States Government Publications
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1932
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1932
Book Description
NASA Technical Memorandum
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 662
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 662
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Analysis of Noise Produced by Jet Impingement Near the Trailing Edge of a Flat and a Curved Plate
Author: Daniel J. McKinzie
Publisher:
ISBN:
Category : Flaps (Airplanes)
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : Flaps (Airplanes)
Languages : en
Pages : 36
Book Description
AIAA 76-487 - AIAA 76-530
Mechanics of Flow-Induced Sound and Vibration, Volume 2
Author: William K. Blake
Publisher: Academic Press
ISBN: 0128122900
Category : Science
Languages : en
Pages : 696
Book Description
Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting from classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including hydrodynamically induced cavitation and bubble noise, turbulent wall-pressure fluctuations, pipe and duct systems, lifting surface flow noise and vibration, and noise from rotating machinery. Each chapter is illustrated with comparisons of leading formulas and measured data. Combined with its companion book, Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be a vital source of information for postgraduate students, engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation. - Presents every important topic in flow-induced sound and vibration - Covers all aspects of the topics addressed, from fundamental theory, to the analytical formulas used in practice - Provides the building blocks of computer modeling for flow-induced sound and vibration
Publisher: Academic Press
ISBN: 0128122900
Category : Science
Languages : en
Pages : 696
Book Description
Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting from classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including hydrodynamically induced cavitation and bubble noise, turbulent wall-pressure fluctuations, pipe and duct systems, lifting surface flow noise and vibration, and noise from rotating machinery. Each chapter is illustrated with comparisons of leading formulas and measured data. Combined with its companion book, Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be a vital source of information for postgraduate students, engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation. - Presents every important topic in flow-induced sound and vibration - Covers all aspects of the topics addressed, from fundamental theory, to the analytical formulas used in practice - Provides the building blocks of computer modeling for flow-induced sound and vibration