Nilpotent Orbits In Semisimple Lie Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nilpotent Orbits In Semisimple Lie Algebra PDF full book. Access full book title Nilpotent Orbits In Semisimple Lie Algebra by William.M. McGovern. Download full books in PDF and EPUB format.

Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428691
Category : Mathematics
Languages : en
Pages : 201

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428691
Category : Mathematics
Languages : en
Pages : 201

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Nilpotent Orbits In Semisimple Lie Algebra

Nilpotent Orbits In Semisimple Lie Algebra PDF Author: William.M. McGovern
Publisher: Routledge
ISBN: 1351428683
Category : Mathematics
Languages : en
Pages : 206

Book Description
Through the 1990s, a circle of ideas emerged relating three very different kinds of objects associated to a complex semisimple Lie algebra: nilpotent orbits, representations of a Weyl group, and primitive ideals in an enveloping algebra. The principal aim of this book is to collect together the important results concerning the classification and properties of nilpotent orbits, beginning from the common ground of basic structure theory. The techniques used are elementary and in the toolkit of any graduate student interested in the harmonic analysis of representation theory of Lie groups. The book develops the Dynkin-Konstant and Bala-Carter classifications of complex nilpotent orbits, derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits, discusses basic topological questions, and classifies real nilpotent orbits. The classical algebras are emphasized throughout; here the theory can be simplified by using the combinatorics of partitions and tableaux. The authors conclude with a survey of advanced topics related to the above circle of ideas. This book is the product of a two-quarter course taught at the University of Washington.

Lie Theory

Lie Theory PDF Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341

Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.

Representations and Nilpotent Orbits of Lie Algebraic Systems

Representations and Nilpotent Orbits of Lie Algebraic Systems PDF Author: Maria Gorelik
Publisher: Springer Nature
ISBN: 3030235319
Category : Mathematics
Languages : en
Pages : 563

Book Description
This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

An Introduction to Lie Groups and Lie Algebras

An Introduction to Lie Groups and Lie Algebras PDF Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237

Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras

Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras PDF Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821869205
Category : Mathematics
Languages : en
Pages : 394

Book Description
This book concerns the theory of unipotent elements in simple algebraic groups over algebraically closed or finite fields, and nilpotent elements in the corresponding simple Lie algebras. These topics have been an important area of study for decades, with applications to representation theory, character theory, the subgroup structure of algebraic groups and finite groups, and the classification of the finite simple groups. The main focus is on obtaining full information on class representatives and centralizers of unipotent and nilpotent elements. Although there is a substantial literature on this topic, this book is the first single source where such information is presented completely in all characteristics. In addition, many of the results are new--for example, those concerning centralizers of nilpotent elements in small characteristics. Indeed, the whole approach, while using some ideas from the literature, is novel, and yields many new general and specific facts concerning the structure and embeddings of centralizers.

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action PDF Author: A. Bialynicki-Birula
Publisher: Springer Science & Business Media
ISBN: 3662050714
Category : Mathematics
Languages : en
Pages : 248

Book Description
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.

Lie Groups and Invariant Theory

Lie Groups and Invariant Theory PDF Author: Ėrnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821837337
Category : Computers
Languages : en
Pages : 284

Book Description
This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.

Introduction to Lie Algebras

Introduction to Lie Algebras PDF Author: K. Erdmann
Publisher: Springer Science & Business Media
ISBN: 1846284902
Category : Mathematics
Languages : en
Pages : 254

Book Description
Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Lie Algebras and Algebraic Groups

Lie Algebras and Algebraic Groups PDF Author: Patrice Tauvel
Publisher: Springer Science & Business Media
ISBN: 9783540241706
Category : Mathematics
Languages : en
Pages : 676

Book Description
Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.