New Sinc Methods of Numerical Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download New Sinc Methods of Numerical Analysis PDF full book. Access full book title New Sinc Methods of Numerical Analysis by Gerd Baumann. Download full books in PDF and EPUB format.

New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis PDF Author: Gerd Baumann
Publisher: Springer Nature
ISBN: 303049716X
Category : Mathematics
Languages : en
Pages : 411

Book Description
This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.

New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis PDF Author: Gerd Baumann
Publisher: Springer Nature
ISBN: 303049716X
Category : Mathematics
Languages : en
Pages : 411

Book Description
This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.

Handbook of Sinc Numerical Methods

Handbook of Sinc Numerical Methods PDF Author: Frank Stenger
Publisher: CRC Press
ISBN: 1439821593
Category : Mathematics
Languages : en
Pages : 482

Book Description
Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author's advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to sci

Numerical Methods Based on Sinc and Analytic Functions

Numerical Methods Based on Sinc and Analytic Functions PDF Author: Frank Stenger
Publisher: Springer Science & Business Media
ISBN: 1461227062
Category : Mathematics
Languages : en
Pages : 580

Book Description
Many mathematicians, scientists, and engineers are familiar with the Fast Fourier Transform, a method based upon the Discrete Fourier Transform. Perhaps not so many mathematicians, scientists, and engineers recognize that the Discrete Fourier Transform is one of a family of symbolic formulae called Sinc methods. Sinc methods are based upon the Sinc function, a wavelet-like function replete with identities which yield approximations to all classes of computational problems. Such problems include problems over finite, semi-infinite, or infinite domains, problems with singularities, and boundary layer problems. Written by the principle authority on the subject, this book introduces Sinc methods to the world of computation. It serves as an excellent research sourcebook as well as a textbook which uses analytic functions to derive Sinc methods for the advanced numerical analysis and applied approximation theory classrooms. Problem sections and historical notes are included.

Sinc Methods for Quadrature and Differential Equations

Sinc Methods for Quadrature and Differential Equations PDF Author: John Lund
Publisher: SIAM
ISBN: 9781611971637
Category : Mathematics
Languages : en
Pages : 307

Book Description
Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right. The intimate connection between collocation and Galerkin for the sinc basis is exposed via sinc-interpolation. The quadrature rules define a class of numerical integration methods that complement better known techniques, which in the case of singular integrands, often require modification. The sinc methodology of the text is illustrated on such applications as initial data recovery, heat diffusion, advective-diffusive transport, and Burgers' equation, to illustrate the numerical implementation of the theory discussed. Engineers may find sinc methods a very competitive approach to the more common boundary element or finite element methods. Further, workers in the signal processing community may find this particular approach a refreshingly different view of the use of sinc functions. Sinc approximation is a relatively new numerical technique. This book provides a much needed elementary level explanation. It has been used for graduate numerical classes at Montana State University and Texas Tech University.

Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods PDF Author: David Gottlieb
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167

Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.

The Birth of Numerical Analysis

The Birth of Numerical Analysis PDF Author: Adhemar Bultheel
Publisher: World Scientific
ISBN: 9812836268
Category : Mathematics
Languages : en
Pages : 240

Book Description
The 1947 paper by John von Neumann and Herman Goldstine, OC Numerical Inverting of Matrices of High OrderOCO ( Bulletin of the AMS, Nov. 1947), is considered as the birth certificate of numerical analysis. Since its publication, the evolution of this domain has been enormous. This book is a unique collection of contributions by researchers who have lived through this evolution, testifying about their personal experiences and sketching the evolution of their respective subdomains since the early years. Sample Chapter(s). Chapter 1: Some pioneers of extrapolation methods (323 KB). Contents: Some Pioneers of Extrapolation Methods (C Brezinski); Very Basic Multidimensional Extrapolation Quadrature (J N Lyness); Numerical Methods for Ordinary Differential Equations: Early Days (J C Butcher); Interview with Herbert Bishop Keller (H M Osinga); A Personal Perspective on the History of the Numerical Analysis of Fredholm Integral Equations of the Second Kind (K Atkinson); Memoires on Building on General Purpose Numerical Algorithms Library (B Ford); Recent Trends in High Performance Computing (J J Dongarra et al.); Nonnegativity Constraints in Numerical Analysis (D-H Chen & R J Plemmons); On Nonlinear Optimization Since 1959 (M J D Powell); The History and Development of Numerical Analysis in Scotland: A Personal Perspective (G Alistair Watson); Remembering Philip Rabinowitz (P J Davis & A S Fraenkel); My Early Experiences with Scientific Computation (P J Davis); Applications of Chebyshev Polynomials: From Theoretical Kinematics to Practical Computations (R Piessens). Readership: Mathematicians in numerical analysis and mathematicians who are interested in the history of mathematics.

Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R PDF Author: James P Howard, II
Publisher: CRC Press
ISBN: 1498723640
Category : Mathematics
Languages : en
Pages : 257

Book Description
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

Introduction to Numerical Analysis

Introduction to Numerical Analysis PDF Author: J. Stoer
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674

Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

A Graduate Introduction to Numerical Methods

A Graduate Introduction to Numerical Methods PDF Author: Robert M. Corless
Publisher: Springer Science & Business Media
ISBN: 1461484537
Category : Mathematics
Languages : en
Pages : 896

Book Description
This book provides an extensive introduction to numerical computing from the viewpoint of backward error analysis. The intended audience includes students and researchers in science, engineering and mathematics. The approach taken is somewhat informal owing to the wide variety of backgrounds of the readers, but the central ideas of backward error and sensitivity (conditioning) are systematically emphasized. The book is divided into four parts: Part I provides the background preliminaries including floating-point arithmetic, polynomials and computer evaluation of functions; Part II covers numerical linear algebra; Part III covers interpolation, the FFT and quadrature; and Part IV covers numerical solutions of differential equations including initial-value problems, boundary-value problems, delay differential equations and a brief chapter on partial differential equations. The book contains detailed illustrations, chapter summaries and a variety of exercises as well some Matlab codes provided online as supplementary material. “I really like the focus on backward error analysis and condition. This is novel in a textbook and a practical approach that will bring welcome attention." Lawrence F. Shampine A Graduate Introduction to Numerical Methods and Backward Error Analysis” has been selected by Computing Reviews as a notable book in computing in 2013. Computing Reviews Best of 2013 list consists of book and article nominations from reviewers, CR category editors, the editors-in-chief of journals, and others in the computing community.

Numerical Methods for Equations and its Applications

Numerical Methods for Equations and its Applications PDF Author: Ioannis K. Argyros
Publisher: CRC Press
ISBN: 1578087538
Category : Mathematics
Languages : en
Pages : 476

Book Description
This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.