New Developments in Lie Theory and Its Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download New Developments in Lie Theory and Its Applications PDF full book. Access full book title New Developments in Lie Theory and Its Applications by Carina Boyallian. Download full books in PDF and EPUB format.

New Developments in Lie Theory and Its Applications

New Developments in Lie Theory and Its Applications PDF Author: Carina Boyallian
Publisher: American Mathematical Soc.
ISBN: 0821852590
Category : Mathematics
Languages : en
Pages : 169

Book Description
Focuses on representation theory, harmonic analysis in Lie groups, and mathematical physics related to Lie theory. The papers give a broad overview of these subjects and also of the recent developments in research.

New Developments in Lie Theory and Its Applications

New Developments in Lie Theory and Its Applications PDF Author: Carina Boyallian
Publisher: American Mathematical Soc.
ISBN: 0821852590
Category : Mathematics
Languages : en
Pages : 169

Book Description
Focuses on representation theory, harmonic analysis in Lie groups, and mathematical physics related to Lie theory. The papers give a broad overview of these subjects and also of the recent developments in research.

New Developments in Lie Theory and Their Applications

New Developments in Lie Theory and Their Applications PDF Author: Juan Tirao
Publisher: Springer Science & Business Media
ISBN: 1461229782
Category : Mathematics
Languages : en
Pages : 232

Book Description
Representation theory, and more generally Lie theory, has played a very important role in many of the recent developments of mathematics and in the interaction of mathematics with physics. In August-September 1989, a workshop (Third Workshop on Representation Theory of Lie Groups and its Applications) was held in the environs of C6rdoba, Argentina to present expositions of important recent developments in the field that would be accessible to graduate students and researchers in related fields. This volume contains articles that are edited versions of the lectures (and short courses) given at the workshop. Within representation theory, one of the main open problems is to determine the unitary dual of a real reductive group. Although this prob lem is as yet unsolved, the recent work of Barbasch, Vogan, Arthur as well as others has shed new light on the structure of the problem. The article of D. Vogan presents an exposition of some aspects of this prob lem, emphasizing an extension of the orbit method of Kostant, Kirillov. Several examples are given that explain why the orbit method should be extended and how this extension should be implemented.

Lie Theory and Its Applications in Physics

Lie Theory and Its Applications in Physics PDF Author: Vladimir Dobrev
Publisher: Springer Science & Business Media
ISBN: 4431542701
Category : Mathematics
Languages : en
Pages : 535

Book Description
Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics” held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory.

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations PDF Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524

Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Lie Theory and Its Applications in Physics

Lie Theory and Its Applications in Physics PDF Author: Vladimir Dobrev
Publisher: Springer Nature
ISBN: 9811577757
Category : Science
Languages : en
Pages : 552

Book Description
This volume presents modern trends in the area of symmetries and their applications based on contributions to the workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2019. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a large interdisciplinary and interrelated field. The topics covered in this volume from the workshop represent the most modern trends in the field : Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Polylogarithms, and Supersymmetry. They also include Supersymmetric Calogero-type models, Quantum Groups, Deformations, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, and Exceptional Quantum Algebra for the standard model of particle physics This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.

Representation of Lie Groups and Special Functions

Representation of Lie Groups and Special Functions PDF Author: N.Ja. Vilenkin
Publisher: Springer Science & Business Media
ISBN: 9401728852
Category : Mathematics
Languages : en
Pages : 518

Book Description
In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics

Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics PDF Author: D.H. Sattinger
Publisher: Springer Science & Business Media
ISBN: 1475719108
Category : Mathematics
Languages : en
Pages : 218

Book Description
This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

Lie Groups, Lie Algebras, and Some of Their Applications

Lie Groups, Lie Algebras, and Some of Their Applications PDF Author: Robert Gilmore
Publisher: Courier Corporation
ISBN: 0486131564
Category : Mathematics
Languages : en
Pages : 610

Book Description
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry PDF Author: Robert Gilmore
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5

Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Advances in Non-Archimedean Analysis

Advances in Non-Archimedean Analysis PDF Author: Jesus Araujo-Gomez
Publisher: American Mathematical Soc.
ISBN: 0821852914
Category : Mathematics
Languages : en
Pages : 294

Book Description
These collected articles feature recent developments in various areas of non-Archimedean analysis: Hilbert and Banach spaces, finite dimensional spaces, topological vector spaces and operator theory, strict topologies, spaces of continuous functions and of strictly differentiable functions, isomorphisms between Banach functions spaces, and measure and integration.