Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics PDF full book. Access full book title Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics by Florentin Smarandache. Download full books in PDF and EPUB format.

Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics

Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599734729
Category : Neutrosophic logic
Languages : en
Pages : 170

Book Description
Neutrosophic Over-/Under-/Off-Set and -Logic were defined for the first time by Smarandache in 1995 and published in 2007. They are totally different from other sets/logics/probabilities. He extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical/imprecise probability, where the values are not allowed outside the interval [0, 1], since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components. Example of Neutrosophic Offset. In a given company a full-time employer works 40 hours per week. Let’s consider the last week period. Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, her membership degree was 30/40 = 0.75 < 1. John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this company. But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work overtime, and those who work full-time or part-time. That’s why we need to associate a degree of membership strictly greater than 1 to the overtime workers. Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 0/40 = 0. Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 worked hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0. Consequently, we need to make distinction between employees who produce damage, and those who produce profit, or produce neither damage no profit to the company. Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into consideration. Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively Neutrosophic Over-/Under-/Off-Logic, -Measure, -Probability, -Statistics etc. [Smarandache, 2007]. Keywords: Neutrosophic Overset, Neutrosophic Underset, Neutrosophic Offset; Neutrosophic Overlogic, Neutrosophic Underlogic, Neutrosophic Offlogic; Neutrosophic Overmeasure, Neutrosophic Undermeasure, Neutrosophic Offmeasure; Neutrosophic Overprobability, Neutrosophic Underprobability, Neutrosophic Offprobability; Neutrosophic Overstatistics, Neutrosophic Understatistics, Neutrosophic Offstatistics, etc.

Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics

Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599734729
Category : Neutrosophic logic
Languages : en
Pages : 170

Book Description
Neutrosophic Over-/Under-/Off-Set and -Logic were defined for the first time by Smarandache in 1995 and published in 2007. They are totally different from other sets/logics/probabilities. He extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise with respect to the classical fuzzy set/logic, intuitionistic fuzzy set/logic, or classical/imprecise probability, where the values are not allowed outside the interval [0, 1], since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components. Example of Neutrosophic Offset. In a given company a full-time employer works 40 hours per week. Let’s consider the last week period. Helen worked part-time, only 30 hours, and the other 10 hours she was absent without payment; hence, her membership degree was 30/40 = 0.75 < 1. John worked full-time, 40 hours, so he had the membership degree 40/40 = 1, with respect to this company. But George worked overtime 5 hours, so his membership degree was (40+5)/40 = 45/40 = 1.125 > 1. Thus, we need to make distinction between employees who work overtime, and those who work full-time or part-time. That’s why we need to associate a degree of membership strictly greater than 1 to the overtime workers. Now, another employee, Jane, was absent without pay for the whole week, so her degree of membership was 0/40 = 0. Yet, Richard, who was also hired as a full-time, not only didn’t come to work last week at all (0 worked hours), but he produced, by accidentally starting a devastating fire, much damage to the company, which was estimated at a value half of his salary (i.e. as he would have gotten for working 20 hours that week). Therefore, his membership degree has to be less that Jane’s (since Jane produced no damage). Whence, Richard’s degree of membership, with respect to this company, was - 20/40 = - 0.50 < 0. Consequently, we need to make distinction between employees who produce damage, and those who produce profit, or produce neither damage no profit to the company. Therefore, the membership degrees > 1 and < 0 are real in our world, so we have to take them into consideration. Then, similarly, the Neutrosophic Logic/Measure/Probability/Statistics etc. were extended to respectively Neutrosophic Over-/Under-/Off-Logic, -Measure, -Probability, -Statistics etc. [Smarandache, 2007]. Keywords: Neutrosophic Overset, Neutrosophic Underset, Neutrosophic Offset; Neutrosophic Overlogic, Neutrosophic Underlogic, Neutrosophic Offlogic; Neutrosophic Overmeasure, Neutrosophic Undermeasure, Neutrosophic Offmeasure; Neutrosophic Overprobability, Neutrosophic Underprobability, Neutrosophic Offprobability; Neutrosophic Overstatistics, Neutrosophic Understatistics, Neutrosophic Offstatistics, etc.

The Encyclopedia of Neutrosophic Researchers, 1st volume

The Encyclopedia of Neutrosophic Researchers, 1st volume PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 1599734680
Category : Mathematics
Languages : en
Pages : 232

Book Description
This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The 78 authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements.

Collected Papers. Volume X

Collected Papers. Volume X PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006

Book Description
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, ‪Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.

Collected Papers. Volume XII

Collected Papers. Volume XII PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006

Book Description
This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.

Neutrosophic Triplet Groups and their Applications to Mathematical Modelling

Neutrosophic Triplet Groups and their Applications to Mathematical Modelling PDF Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1599735334
Category : Arithmetic groups
Languages : en
Pages : 268

Book Description
In this book we define new operations mainly to construct mathematical models akin to Fuzzy Cognitive Maps (FCMs) model, Neutrosophic Cognitive Maps (NCMs) model and Fuzzy Relational Maps (FRMs) model. These new models are defined in chapter four of this book. These new models can find applications in discrete Artificial Neural Networks, soft computing, and social network analysis whenever the concept of indeterminate is involved.

International Journal of Neutrosophic Science (IJNS) Volume 11, 2020

International Journal of Neutrosophic Science (IJNS) Volume 11, 2020 PDF Author: Broumi Said
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 114

Book Description
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.

Neutrosophic Sets and Systems, Vol. 35, 2020

Neutrosophic Sets and Systems, Vol. 35, 2020 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 596

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.

A Novel Approach to Neutrosophic Soft Rough Set under Uncertainty

A Novel Approach to Neutrosophic Soft Rough Set under Uncertainty PDF Author: Ashraf Al-Quran
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 16

Book Description
This paper introduces a new rough set model based on neutrosophic soft set to exploit simultaneously the advantages of rough sets and neutrosophic soft sets in order to handle all types of uncertainty in data.

Neutrosophic Sets and Systems, Vol. 32, 2020

Neutrosophic Sets and Systems, Vol. 32, 2020 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 454

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Parameter Reduction of Neutrosophic Soft Sets and Their Applications, Geometric Programming (NGP) Problems Subject to (⋁,.) Operator; the Minimum Solution, Ngpr Homeomorphism in Neutrosophic Topological Spaces, Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces.

Neutrosophic Soft Rough Topology and its Applications to Multi-Criteria Decision-Making

Neutrosophic Soft Rough Topology and its Applications to Multi-Criteria Decision-Making PDF Author: Muhammad Riaz
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 22

Book Description
In this manuscript, we introduce the notion of neutrosophic soft rough topology (NSR-topology) defined on neutrosophic soft rough set (NSR-set). We define certain properties of NSR- topology including NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point, and NSR-bases. Furthermore, we aim to develop some multi-criteria decision-making (MCDM) methods based on NSR-set and NSR-topology to deal with ambiguities in the real-world problems. For this purpose, we establish algorithm 1 for suitable brand selection and algorithm 2 to determinencore issues to control crime rate based on NSR-lower approximations, NSR-upper approximations, matrices, core, and NSR-topology.