Neutrons, X-rays, and Light PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Neutrons, X-rays, and Light PDF full book. Access full book title Neutrons, X-rays, and Light by Peter Lindner. Download full books in PDF and EPUB format.

Neutrons, X-rays, and Light

Neutrons, X-rays, and Light PDF Author: Peter Lindner
Publisher: Elsevier
ISBN: 9780443291166
Category : Science
Languages : en
Pages : 0

Book Description
Neutrons, X-rays, and Light: Scattering Methods Applied to Soft Condensed Matter, Second Edition addresses the possibilities provided by scattering techniques in the study of soft matter. It fills the gap between fundamental scattering processes, which are described by the general theoretical framework of elastic and quasi-elastic interaction of radiation with matter and state-of-the-art applications to specific soft matter systems. The first part of the book is dedicated to the use of general principles for the measurement and analysis of scattered intensity: elementary scattering process, data reduction, general theorems, and reciprocal space and its link to structural and dynamical information in direct space. In the second part, methods and techniques are further discussed, including resolution effects, contrast variation, static and dynamic light scattering, quasi-elastic neutron scattering, and reflectometry and grazing incidence techniques. Part three deals with the state of the art of scattering studies of typical soft matter systems (polymers, self-assembled surfactant systems, microemulsions, liquid crystals, colloids, aggregates, biological systems) with dedicated chapters for particle interactions, and modelling. Part four highlights special applications, from turbid media to scattering under external constraints, and industrial applications.

Neutrons, X-rays, and Light

Neutrons, X-rays, and Light PDF Author: Peter Lindner
Publisher: Elsevier
ISBN: 9780443291166
Category : Science
Languages : en
Pages : 0

Book Description
Neutrons, X-rays, and Light: Scattering Methods Applied to Soft Condensed Matter, Second Edition addresses the possibilities provided by scattering techniques in the study of soft matter. It fills the gap between fundamental scattering processes, which are described by the general theoretical framework of elastic and quasi-elastic interaction of radiation with matter and state-of-the-art applications to specific soft matter systems. The first part of the book is dedicated to the use of general principles for the measurement and analysis of scattered intensity: elementary scattering process, data reduction, general theorems, and reciprocal space and its link to structural and dynamical information in direct space. In the second part, methods and techniques are further discussed, including resolution effects, contrast variation, static and dynamic light scattering, quasi-elastic neutron scattering, and reflectometry and grazing incidence techniques. Part three deals with the state of the art of scattering studies of typical soft matter systems (polymers, self-assembled surfactant systems, microemulsions, liquid crystals, colloids, aggregates, biological systems) with dedicated chapters for particle interactions, and modelling. Part four highlights special applications, from turbid media to scattering under external constraints, and industrial applications.

Neutron, X-Rays and Light. Scattering Methods Applied to Soft Condensed Matter

Neutron, X-Rays and Light. Scattering Methods Applied to Soft Condensed Matter PDF Author: Th Zemb
Publisher: North-Holland
ISBN: 9781493302260
Category : Science
Languages : en
Pages : 552

Book Description
Scattering experiments, using X-ray, light and neutron sources (in historical order) are key techniques for studying structure and dynamics in systems containing colliods, polymers, surfactants and biological macromolecules, summarized here as soft condensed matter. The education in this field in Europe is very heterogeneous and frequently inadequate, which severely limits an efficient use of these methods, especially at large-scale facilities. The series of "Bombannes" schools and the completely revised and updated second edition of the lecture notes are devoted to a practical approach to current methodology of static and dynamic techiques. Basic information on data interpretation, on the complementarity of the different types of radiation, as well as information on recent applications and developments is presented. The aim is to avoid over - as well as under-exploitation of data.

Applications of Neutron Scattering to Soft Condensed Matter

Applications of Neutron Scattering to Soft Condensed Matter PDF Author: Barbara J Gabrys
Publisher: CRC Press
ISBN: 9789056993009
Category : Science
Languages : en
Pages : 378

Book Description
Neutrons, which are a penetrating yet non destructive probe, are ideally suited to studying the structure, organisation and motion of molecules responsible for the physical properties of materials under a variety of conditions. Applications are in fields as diverse as colloid and polymer science, earth sciences, pharmaceutics, biology and engineering. This book will be of interest to both present and potential future users of neutron sources working in these areas, as both a useful reference and a comprehensive overview.

Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences

Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences PDF Author: T.A. Ezquerra
Publisher: Springer Science & Business Media
ISBN: 354095967X
Category : Science
Languages : en
Pages : 331

Book Description
In a ?rst approximation, certainly rough, one can de?ne as non-crystalline materials those which are neither single-crystals nor poly-crystals. Within this category, we canincludedisorderedsolids,softcondensed matter,andlivesystemsamong others. Contrary to crystals, non-crystalline materials have in common that their intrinsic structures cannot be exclusively described by a discrete and periodical function but by a continuous function with short range of order. Structurally these systems have in common the relevance of length scales between those de?ned by the atomic and the macroscopic scale. In a simple ?uid, for example, mobile molecules may freely exchange their positions, so that their new positions are permutations of their old ones. By contrast, in a complex ?uid large groups of molecules may be interc- nected so that the permutation freedom within the group is lost, while the p- mutation between the groups is possible. In this case, the dominant characteristic length, which may de?ne the properties of the system, is not the molecular size but that of the groups. A central aspect of some non-crystalline materials is that they may self-organize. This is of particular importance for Soft-matter materials. Self-organization is characterized by the spontaneous creation of regular structures at different length scales which may exhibit a certain hierarchy that controls the properties of the system. X-ray scattering and diffraction have been for more than a hundred years an essential technique to characterize the structure of materials. Quite often scattering anddiffractionphenomenaexhibitedbynon-crystallinematerialshavebeenreferred to as non-crystalline diffraction.

Soft-Matter Characterization

Soft-Matter Characterization PDF Author: Redouane Borsali
Publisher: Springer Science & Business Media
ISBN: 140204464X
Category : Science
Languages : en
Pages : 1490

Book Description
This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.

Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter

Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter PDF Author: P. Lindner
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 560

Book Description
Scattering experiments, using X-ray, light and neutron sources (in historical order) are key techniques for studying structure and dynamics in systems containing colliods, polymers, surfactants and biological macromolecules, summarized here as soft condensed matter. The education in this field in Europe is very heterogeneous and frequently inadequate, which severely limits an efficient use of these methods, especially at large-scale facilities. The series of "Bombannes" schools and the completely revised and updated second edition of the lecture notes are devoted to a practical approach to current methodology of static and dynamic techiques. Basic information on data interpretation, on the complementarity of the different types of radiation, as well as information on recent applications and developments is presented. The aim is to avoid over - as well as under-exploitation of data.

Small-Angle Scattering

Small-Angle Scattering PDF Author: Ian W. Hamley
Publisher: John Wiley & Sons
ISBN: 1119768349
Category : Technology & Engineering
Languages : en
Pages : 288

Book Description
SMALL-ANGLE SCATTERING A comprehensive and timely volume covering contemporary research, practical techniques, and theoretical approaches to SAXS and SANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications provides authoritative coverage of both small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS) and grazing incidence small-angle scattering (GISAS) including GISAXS and GISANS. This single-volume resource offers readers an up-to-date view of the state of the field, including the theoretical foundations, experimental methods, and practical applications of small-angle scattering (SAS) techniques including laboratory and synchrotron SAXS and reactor/spallation SANS. Organized into six chapters, the text first describes basic theory, instrumentation, and data analysis. The following chapters contain in-depth discussion on various applications of SAXS and SANS and GISAXS and GISANS, and on specific techniques for investigating structure and order in soft materials, biomolecules, and inorganic and magnetic materials. Author Ian Hamley draws from his more than thirty years’ experience working with many systems, instruments, and types of small-angle scattering experiments across most European facilities to present the most complete introduction to the field available. This book: Presents uniquely broad coverage of practical and theoretical approaches to SAXS and SANS Includes practical information on instrumentation and data analysis Offers useful examples and an accessible and concise presentation of topics Covers new developments in the techniques of SAXS and SANS, including GISAXS and GISANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications is a valuable source of detailed information for researchers and postgraduate students in the field, as well as other researchers using X-ray and neutron scattering to investigate soft materials, other nanostructured materials and biomolecules such as proteins.

Gelled Bicontinuous Microemulsions

Gelled Bicontinuous Microemulsions PDF Author: Michaela Laupheimer
Publisher: Springer
ISBN: 3319077198
Category : Science
Languages : en
Pages : 176

Book Description
Microemulsions and gels are well-known systems, which play a major role in colloidal and interfacial science. In contrast, the concept of gel microemulsions is still quite new. Gelled microemulsions are highly promising for microemulsion applications in which low viscosity is undesirable, such as administering a drug-delivering microemulsion to a certain area of the skin. It is essential to understand the properties of and structures formed in a system combining microemulsion components and a gelator. This PhD thesis by Michaela Laupheimer provides an in-depth discussion of the phase behavior and sol-gel transition of a microemulsion gelled by a low molecular weight gelator as well as the rheological behavior of a gelled bicontinuous microemulsion. Moreover, the microstructure of the gelled bicontinuous system is fully clarified using techniques like self-diffusion NMR and small angle neutron scattering (SANS). By comparing gelled bicontinuous microemulsions with corresponding non-gelled microemulsions and binary gels, it is demonstrated that bicontinuous microemulsion domains coexist with a gelator network and that the coexisting structures possess no fundamental mutual influence. Hence, gelled bicontinuous microemulsions have been identified as a new type of orthogonal self-assembled system.

Soft-Matter Characterization

Soft-Matter Characterization PDF Author: Redouane Borsali
Publisher: Springer Science & Business Media
ISBN: 140204464X
Category : Science
Languages : en
Pages : 1490

Book Description
This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.

Small-Angle Scattering (Neutrons, X-Rays, Light) from Complex Systems

Small-Angle Scattering (Neutrons, X-Rays, Light) from Complex Systems PDF Author: Eugen Mircea Anitas
Publisher: Springer
ISBN: 3030266125
Category : Science
Languages : en
Pages : 116

Book Description
This book addresses the basic physical phenomenon of small-angle scattering (SAS) of neutrons, x-rays or light from complex hierarchical nano- and micro-structures. The emphasis is on developing theoretical models for the material structure containing self-similar or fractal clusters. Within the suggested framework, key approaches for extracting structural information from experimental scattering data are investigated and presented in detail. The range of parameters which can be obtained pave the road towards a better understanding of the correlations between geometrical and various physical properties (electrical, magnetic, mechanical, optical, dynamical, transport etc.) in fractal nano- and micro-materials.