Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 442
Book Description
Energy Research Abstracts
Competing Interactions and Microstructures: Statics and Dynamics
Author: Richard LeSar
Publisher: Springer Science & Business Media
ISBN: 3642734987
Category : Science
Languages : en
Pages : 282
Book Description
Many macroscopic properties of materials are determined primarily by inhomogeneous structures and textures. These intermediate-scale structures often arise from competing interactions operating on different length scales within the material. Our understanding of such phenomena has increased substantially with the identification and theoretical description of solid-state materials with incommensurate and long-period modulated phases, such as ferroelectrics, charge-density-wave compounds, epitaxial layers and polytypes. Experimental diagnosis of inhomogeneous ground states and metastable phases has advanced so far that these are now well-accepted phenomena. These proceedings bring together the work of physicists and materials scientists to review developments in this area and to examine possible future directions, such as how the microscopic understanding emerging in bench-top solid-state systems can be applied in materials science.
Publisher: Springer Science & Business Media
ISBN: 3642734987
Category : Science
Languages : en
Pages : 282
Book Description
Many macroscopic properties of materials are determined primarily by inhomogeneous structures and textures. These intermediate-scale structures often arise from competing interactions operating on different length scales within the material. Our understanding of such phenomena has increased substantially with the identification and theoretical description of solid-state materials with incommensurate and long-period modulated phases, such as ferroelectrics, charge-density-wave compounds, epitaxial layers and polytypes. Experimental diagnosis of inhomogeneous ground states and metastable phases has advanced so far that these are now well-accepted phenomena. These proceedings bring together the work of physicists and materials scientists to review developments in this area and to examine possible future directions, such as how the microscopic understanding emerging in bench-top solid-state systems can be applied in materials science.
Scientific and Technical Aerospace Reports
Statics and Dynamics of Alloy Phase Transformations
Author: Patrice E.A. Turchi
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.
Mesoscopic Phenomena in Multifunctional Materials
Author: Avadh Saxena
Publisher: Springer
ISBN: 3642553753
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
A highly coveted objective of modern materials science is to optimize multiple coupled functionalities in the same single phase material and control the cross-response via multiple external fields. One important example of such multi-functionality are multiferroic materials where two or more ferroic properties are intrinsically coupled. They include, among others, the magneto-electric and magneto-structural materials, which are well understood at the nano- and continuum length (and time) scales. The next emerging frontier is to connect these two limiting scales by probing the mesoscale physics of these materials. This book not only attempts to provide this connection but also presents the state-of-the art of the present understanding and potential applications of many related complex multifunctional materials. The main emphasis is on the multiscale bridging of their properties with the aim to discover novel properties and applications in the context of materials by design. This interdisciplinary book serves both graduate students and expert researchers alike.
Publisher: Springer
ISBN: 3642553753
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
A highly coveted objective of modern materials science is to optimize multiple coupled functionalities in the same single phase material and control the cross-response via multiple external fields. One important example of such multi-functionality are multiferroic materials where two or more ferroic properties are intrinsically coupled. They include, among others, the magneto-electric and magneto-structural materials, which are well understood at the nano- and continuum length (and time) scales. The next emerging frontier is to connect these two limiting scales by probing the mesoscale physics of these materials. This book not only attempts to provide this connection but also presents the state-of-the art of the present understanding and potential applications of many related complex multifunctional materials. The main emphasis is on the multiscale bridging of their properties with the aim to discover novel properties and applications in the context of materials by design. This interdisciplinary book serves both graduate students and expert researchers alike.