Neural Systems for Robotics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Neural Systems for Robotics PDF full book. Access full book title Neural Systems for Robotics by Omid Omidvar. Download full books in PDF and EPUB format.

Neural Systems for Robotics

Neural Systems for Robotics PDF Author: Omid Omidvar
Publisher: Academic Press
ISBN: 0125262809
Category : Computers
Languages : en
Pages : 369

Book Description
Neural Systems for Robotics represents the most up-to-date developments in the rapidly growing aplication area of neural networks, which is one of the hottest application areas for neural networks technology. The book not only contains a comprehensive study of neurocontrollers in complex Robotics systems, written by highly respected researchers in the field but outlines a novel approach to solving Robotics problems. The importance of neural networks in all aspects of Robot arm manipulators, neurocontrol, and Robotic systems is also given thorough and in-depth coverage. All researchers and students dealing with Robotics will find Neural Systems for Robotics of immense interest and assistance. Focuses on the use of neural networks in robotics-one of the hottest application areas for neural networks technology Represents the most up-to-date developments in this rapidly growing application area of neural networks Contains a new and novel approach to solving Robotics problems

Neural Systems for Robotics

Neural Systems for Robotics PDF Author: Omid Omidvar
Publisher: Academic Press
ISBN: 0125262809
Category : Computers
Languages : en
Pages : 369

Book Description
Neural Systems for Robotics represents the most up-to-date developments in the rapidly growing aplication area of neural networks, which is one of the hottest application areas for neural networks technology. The book not only contains a comprehensive study of neurocontrollers in complex Robotics systems, written by highly respected researchers in the field but outlines a novel approach to solving Robotics problems. The importance of neural networks in all aspects of Robot arm manipulators, neurocontrol, and Robotic systems is also given thorough and in-depth coverage. All researchers and students dealing with Robotics will find Neural Systems for Robotics of immense interest and assistance. Focuses on the use of neural networks in robotics-one of the hottest application areas for neural networks technology Represents the most up-to-date developments in this rapidly growing application area of neural networks Contains a new and novel approach to solving Robotics problems

Neural Networks for Robotics

Neural Networks for Robotics PDF Author: Nancy Arana-Daniel
Publisher: CRC Press
ISBN: 1351231774
Category : Technology & Engineering
Languages : en
Pages : 246

Book Description
The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.

Neural Networks in Robotics

Neural Networks in Robotics PDF Author: George Bekey
Publisher: Springer Science & Business Media
ISBN: 9780792392682
Category : Technology & Engineering
Languages : en
Pages : 582

Book Description
Neural Networks in Robotics is the first book to present an integrated view of both the application of artificial neural networks to robot control and the neuromuscular models from which robots were created. The behavior of biological systems provides both the inspiration and the challenge for robotics. The goal is to build robots which can emulate the ability of living organisms to integrate perceptual inputs smoothly with motor responses, even in the presence of novel stimuli and changes in the environment. The ability of living systems to learn and to adapt provides the standard against which robotic systems are judged. In order to emulate these abilities, a number of investigators have attempted to create robot controllers which are modelled on known processes in the brain and musculo-skeletal system. Several of these models are described in this book. On the other hand, connectionist (artificial neural network) formulations are attractive for the computation of inverse kinematics and dynamics of robots, because they can be trained for this purpose without explicit programming. Some of the computational advantages and problems of this approach are also presented. For any serious student of robotics, Neural Networks in Robotics provides an indispensable reference to the work of major researchers in the field. Similarly, since robotics is an outstanding application area for artificial neural networks, Neural Networks in Robotics is equally important to workers in connectionism and to students for sensormonitor control in living systems.

Neural Systems for Control

Neural Systems for Control PDF Author: Omid Omidvar
Publisher: Elsevier
ISBN: 0080537391
Category : Computers
Languages : en
Pages : 375

Book Description
Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Neural Network Control Of Robot Manipulators And Non-Linear Systems

Neural Network Control Of Robot Manipulators And Non-Linear Systems PDF Author: F W Lewis
Publisher: CRC Press
ISBN: 9780748405961
Category : Technology & Engineering
Languages : en
Pages : 470

Book Description
There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Adaptive Neural Network Control of Robotic Manipulators

Adaptive Neural Network Control of Robotic Manipulators PDF Author: Tong Heng Lee
Publisher: World Scientific
ISBN: 9789810234522
Category :
Languages : en
Pages : 400

Book Description
Introduction; Mathematical background; Dynamic modelling of robots; Structured network modelling of robots; Adaptive neural network control of robots; Neural network model reference adaptive control; Flexible joint robots; task space and force control; Bibliography; Computer simulation; Simulation software in C.

Kinematic Control of Redundant Robot Arms Using Neural Networks

Kinematic Control of Redundant Robot Arms Using Neural Networks PDF Author: Shuai Li
Publisher: John Wiley & Sons
ISBN: 1119556961
Category : Technology & Engineering
Languages : en
Pages : 214

Book Description
Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations. Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation. Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.

Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition PDF Author: Alexandros Iosifidis
Publisher: Academic Press
ISBN: 0323885721
Category : Technology & Engineering
Languages : en
Pages : 638

Book Description
Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Parallel Computation Systems for Robotics

Parallel Computation Systems for Robotics PDF Author: A. Fijany
Publisher: World Scientific
ISBN: 9789810206635
Category : Technology & Engineering
Languages : en
Pages : 266

Book Description
This book presents an extensive survey of the state-of-the-art research in parallel computational algorithms and architectures for robot manipulator control and simulation. It deals not only with specifics but also includes general and broader issues which serve as a useful foundation to the topic. The educational flavor of the book makes it a necessary resource for researchers, engineers and students wanting to be familiarized with the potential offered by the application of parallel processing to robotic problems, and its current issues and trends.

Neural Networks for Control

Neural Networks for Control PDF Author: W. Thomas Miller
Publisher: MIT Press
ISBN: 9780262631617
Category : Computers
Languages : en
Pages : 548

Book Description
Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series