Neural Networks and Deep Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Neural Networks and Deep Learning PDF full book. Access full book title Neural Networks and Deep Learning by Charu C. Aggarwal. Download full books in PDF and EPUB format.

Neural Networks and Deep Learning

Neural Networks and Deep Learning PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512

Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Neural Networks and Deep Learning

Neural Networks and Deep Learning PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512

Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Deep Learning

Deep Learning PDF Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801

Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Machine Learning with Neural Networks

Machine Learning with Neural Networks PDF Author: Bernhard Mehlig
Publisher: Cambridge University Press
ISBN: 1108849563
Category : Science
Languages : en
Pages : 262

Book Description
This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory PDF Author: Daniel A. Roberts
Publisher: Cambridge University Press
ISBN: 1316519333
Category : Computers
Languages : en
Pages : 473

Book Description
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Deep Learning Architectures

Deep Learning Architectures PDF Author: Ovidiu Calin
Publisher: Springer Nature
ISBN: 3030367215
Category : Mathematics
Languages : en
Pages : 760

Book Description
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter. This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707

Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Deep Learning Neural Networks: Design And Case Studies

Deep Learning Neural Networks: Design And Case Studies PDF Author: Daniel Graupe
Publisher: World Scientific Publishing Company
ISBN: 9813146478
Category : Computers
Languages : en
Pages : 280

Book Description
Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance.This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.

MATLAB Deep Learning

MATLAB Deep Learning PDF Author: Phil Kim
Publisher: Apress
ISBN: 1484228456
Category : Computers
Languages : en
Pages : 162

Book Description
Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

Grokking Deep Learning

Grokking Deep Learning PDF Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475

Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Applied Deep Learning

Applied Deep Learning PDF Author: Umberto Michelucci
Publisher: Apress
ISBN: 1484237900
Category : Computers
Languages : en
Pages : 425

Book Description
Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.