Neural Control of Gastrointestinal Function PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Neural Control of Gastrointestinal Function PDF full book. Access full book title Neural Control of Gastrointestinal Function by David Grundy. Download full books in PDF and EPUB format.

Neural Control of Gastrointestinal Function

Neural Control of Gastrointestinal Function PDF Author: David Grundy
Publisher: Morgan & Claypool Publishers
ISBN: 1615043578
Category : Science
Languages : en
Pages : 137

Book Description
The gastrointestinal tract is a long, muscular tube responsible for the digestion of food, assimilation of nutrients and elimination of waste. This is achieved by secretion of digestive enzymes and absorption from the intestinal lumen, with different regions playing specific roles in the processing of specific nutrients. These regions come into play sequentially as ingested material is moved along the length of the GI tract by contractions of the muscle layers. In some regions like the oesophagus transit it rapid and measured in seconds while in others like the colon transit is measured in hours and even days, commensurate with the relative slow fermentation that takes place in the large bowel. An hierarchy of controls, neural and endocrine, serve to regulate the various cellular targets that exist in the gut wall. These include muscle cells for contraction and epithelial cells for secretion and absorption. However, there are complex interactions between these digestive mechanisms and other mechanisms that regulate blood flow, immune function, endocrine secretion and food intake. These ensure a fine balance between the ostensibly conflicting tasks of digestion and absorption and protection from potentially harmful ingested materials. They match assimilation of nutrients with hunger and satiety and they ensure that regions of the GI tract that are meters apart work together in a coordinated fashion to match these diverse functions to the digestive needs of the individual. This ebook will provide an overview of the neural mechanisms that control gastrointestinal function. Table of Contents: Neural Control of Gastrointestinal Function / Cells and Tissues / Enteric Nervous System / From Gut to CNS: Extrinsic Sensory Innervation / Sympathetic Innervation of the Gut / Parasympathetic Innervation of the Gut / Integration of Function / References

Neural Control of Gastrointestinal Function

Neural Control of Gastrointestinal Function PDF Author: David Grundy
Publisher: Morgan & Claypool Publishers
ISBN: 1615043578
Category : Science
Languages : en
Pages : 137

Book Description
The gastrointestinal tract is a long, muscular tube responsible for the digestion of food, assimilation of nutrients and elimination of waste. This is achieved by secretion of digestive enzymes and absorption from the intestinal lumen, with different regions playing specific roles in the processing of specific nutrients. These regions come into play sequentially as ingested material is moved along the length of the GI tract by contractions of the muscle layers. In some regions like the oesophagus transit it rapid and measured in seconds while in others like the colon transit is measured in hours and even days, commensurate with the relative slow fermentation that takes place in the large bowel. An hierarchy of controls, neural and endocrine, serve to regulate the various cellular targets that exist in the gut wall. These include muscle cells for contraction and epithelial cells for secretion and absorption. However, there are complex interactions between these digestive mechanisms and other mechanisms that regulate blood flow, immune function, endocrine secretion and food intake. These ensure a fine balance between the ostensibly conflicting tasks of digestion and absorption and protection from potentially harmful ingested materials. They match assimilation of nutrients with hunger and satiety and they ensure that regions of the GI tract that are meters apart work together in a coordinated fashion to match these diverse functions to the digestive needs of the individual. This ebook will provide an overview of the neural mechanisms that control gastrointestinal function. Table of Contents: Neural Control of Gastrointestinal Function / Cells and Tissues / Enteric Nervous System / From Gut to CNS: Extrinsic Sensory Innervation / Sympathetic Innervation of the Gut / Parasympathetic Innervation of the Gut / Integration of Function / References

The Enteric Nervous System

The Enteric Nervous System PDF Author: John Barton Furness
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 312

Book Description


The Enteric Nervous System

The Enteric Nervous System PDF Author: Stuart Brierley
Publisher: Springer
ISBN: 3319275925
Category : Medical
Languages : en
Pages : 236

Book Description
Nearly 30 years ago, a number of scientists working on the Enteric Nervous System (ENS) gathered at Flinders University, in Adelaide, Australia to discuss the advances and future of their research. It was a friendly and stimulating meeting, attended by most of the major players, in what was to become the discipline of ‘Neurogastroenterology'. In 2014, the main Australasian Neuroscience Society meeting was held in Adelaide, Australia, providing the perfect opportunity to recreate a follow-up ENS meeting. As such, the ‘ENS II 2014 meeting’ aimed to identify how far the field of enteric neuroscience had developed, where the future was heading, and what technological advances had been made to address current and future unresolved questions. 30 speakers from around the world were invited to give talks and revisit the original expectations, the advances made since, and the future directions of ENS research. These discussions included three generations of investigators from 7 different countries. This publication represents the majority of proceedings from the ‘The Enteric Nervous System II 2014’ conference, which was held on February 1st - 2nd 2014 at the National Wine Centre of Australia, Adelaide. This meeting was an Official satellite meeting of the 34th Annual Meeting of Australasian Neuroscience Society, which was also held in Adelaide. The 20 contributions contained within this submission are from international researchers in the field of the ENS, who reviewed the advances made since the first meeting in the early 1980s and summarizes the present and future perspectives of neuro-gastroenterology. Some colleagues could not attend but did send greetings and their messages are included in these proceedings.

Neural Control of Renal Function

Neural Control of Renal Function PDF Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99

Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References

Enteric Glia

Enteric Glia PDF Author: Brian D. Gulbransen
Publisher: Biota Publishing
ISBN: 1615046615
Category : Medical
Languages : en
Pages : 72

Book Description
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography

Innervation of the Gastrointestinal Tract

Innervation of the Gastrointestinal Tract PDF Author: Simon Brookes
Publisher: CRC Press
ISBN: 9781134454822
Category : Medical
Languages : en
Pages : 560

Book Description
The long tube that makes up the gastrointestinal tract is composed of a variety of tissue types and is the largest internal organ of the body. Its main function is to digest food and absorb the released nutrients. Furthermore, it is subdivided into functionally distinct regions that each mediate one of a variety of actions upon the food consumed, including ingestion, propulsion, secretion, digestion, absorption and expulsion. Autonomic neuronal circuitry is intimately involved in controlling many of these multiple functions of the gut, making it an appealing subject for the study of neuroscientists. This book reviews the state of current knowledge on the innervation of the gut by the enteric nervous system, and its interface with the extrinsic innervation, from a number of different perspectives, with the aim of providing a comprehensive and accessible account of the subject.

Gastrointestinal Physiology

Gastrointestinal Physiology PDF Author: Menizibeya Osain Welcome
Publisher: Springer
ISBN: 3319910566
Category : Medical
Languages : en
Pages : 1037

Book Description
This book offers one of the most comprehensive reviews in the field of gastrointestinal (GI) physiology, guiding readers on a journey through the complete digestive tract, while also highlighting related organs and glandular systems. It is not solely limited to organ system physiology, and related disciplines like anatomy and histology, but also examines the molecular and cellular processes that keep the digestive system running. As such, the book provides extensive information on the molecular, cellular, tissue, organ, and system levels of functions in the GI system. Chapters on the roles of the gut as an endocrine, exocrine and neural organ, as well as its microbiome functions, broaden readers’ understanding of the multi-organ networks in the human body. To help illustrate the interconnections between the physiological concepts, principles and clinical presentations, it outlines clinical examples such as pathologies that link basic science with clinical practice in special “clinical correlates” sections. Covering both traditional and contemporary topics, it is a valuable resource for biomedical students, as well as healthcare and scientific professionals.

Relationships Among the Brain, the Digestive System, and Eating Behavior

Relationships Among the Brain, the Digestive System, and Eating Behavior PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309366860
Category : Medical
Languages : en
Pages : 198

Book Description
On July 9-10, 2014, the Institute of Medicine's Food Forum hosted a public workshop to explore emerging and rapidly developing research on relationships among the brain, the digestive system, and eating behavior. Drawing on expertise from the fields of nutrition and food science, animal and human physiology and behavior, and psychology and psychiatry as well as related fields, the purpose of the workshop was to (1) review current knowledge on the relationship between the brain and eating behavior, explore the interaction between the brain and the digestive system, and consider what is known about the brain's role in eating patterns and consumer choice; (2) evaluate current methods used to determine the impact of food on brain activity and eating behavior; and (3) identify gaps in knowledge and articulate a theoretical framework for future research. Relationships among the Brain, the Digestive System, and Eating Behavior summarizes the presentations and discussion of the workshop.

Enteric Nervous System

Enteric Nervous System PDF Author: Jack D. Wood
Publisher: Morgan & Claypool Publishers
ISBN: 161504339X
Category : Medical
Languages : en
Pages : 175

Book Description
Moreover, our incomplete understanding of the pathobiology of these disorders highlights a need for research directed to expansion of current knowledge of the neurobiology of the ENS at all levels of organization from the cellular biology of individual neurons to the biophysics of integrated networks to whole organ behavior. Investigation of the normal and disordered ENS and its interactions with the central nervous system is a branch of neurogastroenterology. Neurogastroenterology is a scientific and clinical subspecialty of gastroenterology that deals with the neural mechanisms that influence function of the digestive tract and that underlie projection of conscious sensations to the gut.

Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease PDF Author: Mark Lyte
Publisher: Springer
ISBN: 1493908979
Category : Science
Languages : en
Pages : 440

Book Description
The field of microbial endocrinology is expressly devoted to understanding the mechanisms by which the microbiota (bacteria within the microbiome) interact with the host (“us”). This interaction is a two-way street and the driving force that governs these interactions are the neuroendocrine products of both the host and the microbiota. Chapters include neuroendocrine hormone-induced changes in gene expression and microbial endocrinology and probiotics. This is the first in a series of books dedicated to understanding how bi-directional communication between host and bacteria represents the cutting edge of translational medical research, and hopefully identifies new ways to understand the mechanisms that determine health and disease.​