Network-based Highway Crash Prediction Using Geographic Information Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Network-based Highway Crash Prediction Using Geographic Information Systems PDF full book. Access full book title Network-based Highway Crash Prediction Using Geographic Information Systems by . Download full books in PDF and EPUB format.

Network-based Highway Crash Prediction Using Geographic Information Systems

Network-based Highway Crash Prediction Using Geographic Information Systems PDF Author:
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 72

Book Description


Network-based Highway Crash Prediction Using Geographic Information Systems

Network-based Highway Crash Prediction Using Geographic Information Systems PDF Author:
Publisher:
ISBN:
Category : Roads
Languages : en
Pages : 72

Book Description


Laser Scanning Systems in Highway and Safety Assessment

Laser Scanning Systems in Highway and Safety Assessment PDF Author: Biswajeet Pradhan
Publisher: Springer
ISBN: 3030103749
Category : Technology & Engineering
Languages : en
Pages : 165

Book Description
This book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.

What Value May Geographic Information Systems Add to the Art of Identifying Crash Countermeasures?

What Value May Geographic Information Systems Add to the Art of Identifying Crash Countermeasures? PDF Author: John S. Miller
Publisher: DIANE Publishing
ISBN: 1437904130
Category : Technology & Engineering
Languages : en
Pages : 43

Book Description
Geographic Info. Systems (GIS) can be employed to relate, organize, and analyze roadway and crash data, thereby facilitating crash countermeasure identification and evaluation. GIS cannot, however, replace the role of the local analyst as a problem solver who needs to interpret results and recommend engineering, enforcement, or educ. improvements. Using the PC-based Micro Traffic Records System (MTRS), a software packaged employed in Virginia that records crashes at either a specific intersection or between 2 cross streets, it was possible to place 82% of the MTRS crash locations within a GIS. Without crashes that were demarcated at ¿private property¿ locations, the placement rate climbs to 94% for intersection locations. Illus.

Real-time Crash Prediction of Urban Highways Using Machine Learning Algorithms

Real-time Crash Prediction of Urban Highways Using Machine Learning Algorithms PDF Author: Mirza Ahammad Sharif
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Motor vehicle crashes in the United States continue to be a serious safety concern for state highway agencies, with over 30,000 fatal crashes reported each year. The World Health Organization (WHO) reported in 2016 that vehicle crashes were the eighth leading cause of death globally. Crashes on roadways are rare and random events that occur due to the result of the complex relationship between the driver, vehicle, weather, and roadway. A significant breadth of research has been conducted to predict and understand why crashes occur through spatial and temporal analyses, understanding information about the driver and roadway, and identification of hazardous locations through geographic information system (GIS) applications. Also, previous research studies have investigated the effectiveness of safety devices designed to reduce the number and severity of crashes. Today, data-driven traffic safety studies are becoming an essential aspect of the planning, design, construction, and maintenance of the roadway network. This can only be done with the assistance of state highway agencies collecting and synthesizing historical crash data, roadway geometry data, and environmental data being collected every day at a resolution that will help researchers develop powerful crash prediction tools. The objective of this research study was to predict vehicle crashes in real-time. This exploratory analysis compared three well-known machine learning methods, including logistic regression, random forest, support vector machine. Additionally, another methodology was developed using variables selected from random forest models that were inserted into the support vector machine model. The study review of the literature noted that this study's selected methods were found to be more effective in terms of prediction power. A total of 475 crashes were identified from the selected urban highway network in Kansas City, Kansas. For each of the 475 identified crashes, six no-crash events were collected at the same location. This was necessary so that the predictive models could distinguish a crash-prone traffic operational condition from regular traffic flow conditions. Multiple data sources were fused to create a database including traffic operational data from the KC Scout traffic management center, crash and roadway geometry data from the Kanas Department of Transportation; and weather data from NOAA. Data were downloaded from five separate roadway radar sensors close to the crash location. This enable understanding of the traffic flow along the roadway segment (upstream and downstream) during the crash. Additionally, operational data from each radar sensor were collected in five minutes intervals up to 30 minutes prior to a crash occurring. Although six no-crash events were collected for each crash observation, the ratio of crash and no-crash were then reduced to 1:4 (four non-crash events), and 1:2 (two non-crash events) to investigate possible effects of class imbalance on crash prediction. Also, 60%, 70%, and 80% of the data were selected in training to develop each model. The remaining data were then used for model validation. The data used in training ratios were varied to identify possible effects of training data as it relates to prediction power. Additionally, a second database was developed in which variables were log-transformed to reduce possible skewness in the distribution. Model results showed that the size of the dataset increased the overall accuracy of crash prediction. The dataset with a higher observation count could classify more data accurately. The highest accuracies in all three models were observed using the dataset of a 1:6 ratio (one crash event for six no-crash events). The datasets with1:2 ratio predicted 13% to 18% lower than the 1:6 ratio dataset. However, the sensitivity (true positive prediction) was observed highest for the dataset of a 1:2 ratio. It was found that reducing the response class imbalance; the sensitivity could be increased with the disadvantage of a reduction in overall prediction accuracy. The effects of the split ratio were not significantly different in overall accuracy. However, the sensitivity was found to increase with an increase in training data. The logistic regression model found an average of 30.79% (with a standard deviation of 5.02) accurately. The random forest models predicted an average of 13.36% (with a standard deviation of 9.50) accurately. The support vector machine models predicted an average of 29.35% (with a standard deviation of 7.34) accurately. The hybrid approach of random forest and support vector machine models predicted an average of 29.86% (with a standard deviation of 7.33) accurately. The significant variables found from this study included the variation in speed between the posted speed limit and average roadway traffic speed around the crash location. The variations in speed and vehicle per hour between upstream and downstream traffic of a crash location in the previous five minutes before a crash occurred were found to be significant as well. This study provided an important step in real-time crash prediction and complemented many previous research studies found in the literature review. Although the models investigate were somewhat inconclusive, this study provided an investigation of data, variables, and combinations of variables that have not been investigated previously. Real-time crash prediction is expected to assist with the on-going development of connected and autonomous vehicles as the fleet mix begins to change, and new variables can be collected, and data resolution becomes greater. Real-time crash prediction models will also continue to advance highway safety as metropolitan areas continue to grow, and congestion continues to increase.

Enhancing Road Traffic Safety

Enhancing Road Traffic Safety PDF Author:
Publisher:
ISBN:
Category : Geographic information systems
Languages : en
Pages : 23

Book Description


Spatial Analysis Methods of Road Traffic Collisions

Spatial Analysis Methods of Road Traffic Collisions PDF Author: Becky P. Y. Loo
Publisher: CRC Press
ISBN: 1439874131
Category : Mathematics
Languages : en
Pages : 346

Book Description
Examine the Prevalence and Geography of Road CollisionsSpatial Analysis Methods of Road Traffic Collisions centers on the geographical nature of road crashes, and uses spatial methods to provide a greater understanding of the patterns and processes that cause them. Written by internationally known experts in the field of transport geography, the bo

Highway Safety Analytics and Modeling

Highway Safety Analytics and Modeling PDF Author: Dominique Lord
Publisher: Elsevier
ISBN: 0128168196
Category : Law
Languages : en
Pages : 504

Book Description
Highway Safety Analytics and Modeling comprehensively covers the key elements needed to make effective transportation engineering and policy decisions based on highway safety data analysis in a single. reference. The book includes all aspects of the decision-making process, from collecting and assembling data to developing models and evaluating analysis results. It discusses the challenges of working with crash and naturalistic data, identifies problems and proposes well-researched methods to solve them. Finally, the book examines the nuances associated with safety data analysis and shows how to best use the information to develop countermeasures, policies, and programs to reduce the frequency and severity of traffic crashes. Complements the Highway Safety Manual by the American Association of State Highway and Transportation Officials Provides examples and case studies for most models and methods Includes learning aids such as online data, examples and solutions to problems

A Framework for Developing Road Risk Indices Using Quantile Regression Based Crash Prediction Model

A Framework for Developing Road Risk Indices Using Quantile Regression Based Crash Prediction Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 210

Book Description
Safety reviews of existing roads are becoming a popular practice of many agencies nationally and internationally. Knowing road safety information is of great importance to both policymakers in addressing safety concerns and travelers in managing their trips. There have been various efforts in developing methodologies to measure and assess road safety in an effective manner. However, the existing research and practices are still constrained by their subjective and reactive nature. The goal of this research is to develop a framework of Road Risk Indices (RRIs) to assess road risks of existing highway infrastructure for both road users and agencies based on road geometrics, traffic conditions, and historical crash data. The proposed RRIs are intended to give a comprehensive and objective view of road safety, so that safety problems can be identified at an early stage before they rise in the form of accidents. A methodological framework of formulating RRIs that integrates results from crash prediction models and historical crash data is proposed, and Linear Referencing tools in the ArcGIS software are used to develop digital maps to publish estimated RRIs. These maps provide basic Geographic Information System (GIS) functions, including viewing and querying RRIs, and performing spatial analysis tasks. A semi-parameter count model and quantile regression based estimation are proposed to capture the specific characteristics of crash data and provide more robust and accurate predictions on crash counts. Crash data collected on Interstate Highways in Washington State for the year 2002 was extracted from the Highway Safety Information System (HSIS) and used for the case study. The results from the case study show that the proposed framework is capable of capturing statistical correlations between traffic crashes and influencing factors, leading to the effective integration of safety information in composite indices.

Pavement Management Applications Using Geographic Information Systems

Pavement Management Applications Using Geographic Information Systems PDF Author: Gerardo W. Flintsch
Publisher: Transportation Research Board
ISBN: 0309070147
Category : Geographic information systems
Languages : en
Pages : 75

Book Description
TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 335: Pavement Management Applications Using Geographic Information Systems examines the state of the practice and knowledge of pavement management systems (PMS) using geographic information systems (GIS) and other spatial technologies, and discusses how the technologies have been combined to enhance the highway management process. The synthesis reviews the principal issues related to PMS data collection, integration, management, and dissemination; applications of spatial technologies for map generation and PMS spatial analysis; and implementation-related issues, including approaches used for integrating PMS and GIS and the different tools used to support pavement management decisions.

Crash Severity Modeling in Transportation Systems

Crash Severity Modeling in Transportation Systems PDF Author: Azad Salim Abdulhafedh
Publisher:
ISBN:
Category :
Languages : en
Pages : 243

Book Description
Modeling crash severity is an important component of reasoning about the issues that may affect highway safety. A better understanding of the factors underlying crash severity can be used to reduce the degree of crash severity injury, locate road hazardous sites, and adopt suitable countermeasures. In order to provide insights on the mechanism and behavior of the crash severity injury, a variety of statistical approaches have been utilized to model the relationship between crash severity and potential risk factors. Many of the traditional approaches for analyzing crash severity are limited in that they are based on the assumption that all observations are independent of each other. However, given the reality of vehicle movement in networked systems, the assumption of independence of crash incidence is not likely valid. For instance, spatial and temporal autocorrelations are important sources of dependency among observations that may bias estimates if not considered in the modeling process. Moreover, there are other aspects of vehicular travel that may influence crash severity that have not been explored in traditional analysis approaches. One such aspect is the roadway visibility that is available to a driver at a given time that can impact their ability to react to changing traffic conditions, a characteristics known as sight distance. Accounting for characteristics such as sight distance in crash severity modeling involve moving beyond statistical analysis and modeling the complex geospatial relationships between the driver and the surrounding landscape. To address these limitations of traditional approaches to crash severity modeling, this dissertation first details a framework for detecting temporal and spatial autocorrelation in crash data. An approach for evaluating the sight distance available to drivers along roadways is then proposed. Finally, a crash severity model is developed based upon a multinomial logistic regression approach that incorporates the available sight distance and spatial autocorrelation as potential risk factors, in addition to a wide range of other factors related to road geometry, traffic volume, driver's behavior, environment, and vehicles. To demonstrate the characteristics of the proposed model, an analysis of vehicular crashes (years 2013-2015) along the I-70 corridor in the state of Missouri (MO) and on roadways in Boone County MO is conducted. To assess existing stopping sight distance and decision sight distance on multilane highways, a geographic information system (GIS)-based viewshed analysis is developed to identify the locations that do not conform to AASHTO (2011) criteria regarding stopping and decision sight distances, which could then be used as potential risk factors in crash prediction. Moreover, this method provides a new technique for estimating passing sight distance along two-lane highways, and locating the passing zones and no-passing zones. In order to detect the existence of temporal autocorrelation and whether it's significant in crash data, this dissertation employs the Durbin-Watson (DW) test, the Breusch-Godfrey (LM) test, and the Ljung-Box Q (LBQ) test, and then describes the removal of any significant amount of temporal autocorrelation from crash data using the differencing procedure, and the Cochrane-Orcutt method. To assess whether vehicle crashes are spatially clustered, dispersed, or random, the Moran's I and Getis-Ord Gi* statistics are used as measures of spatial autocorrelation among vehicle incidents. To incorporate spatial autocorrelation in crash severity modeling, the use of the Gi* statistic as a potential risk factor is also explored. The results provide firm evidence on the importance of accounting for spatial and temporal autocorrelation, and sight distance in modeling traffic crash data.