Author: Shashank Jain
Publisher:
ISBN: 9781484285411
Category :
Languages : en
Pages : 0
Book Description
Gain insight into the world of nature-inspired optimization techniques and algorithms. This book will prepare you to apply different nature-inspired optimization techniques to solve problems using Java. You'll start with an introduction to the hidden algorithms that nature uses and find the approximate solutions to optimization problems. You'll then see how living creatures such as fish and birds are able to perform computation to solve specific optimization tasks. This book also covers various nature-inspired algorithms by reviewing code examples for each one followed by crisp and clear explanations of the algorithm using Java code. You'll examine the use of each algorithm in specific industry scenarios such as fleet scheduling in supply chain management, and shop floor management in industrial and manufacturing applications. Nature-Inspired Optimization Algorithms with Java is your pathway to understanding a variety of optimization problems that exist in various industries and domains and it will develop an ability to apply nature-inspired algorithms to find approximate solutions to them. You will: Study optimization and its problems Examine nature-inspired algorithms such as Particle Swarm, Gray wolf, etc. See how nature-inspired algorithms are being used to solve optimization problems Use Java for solving the different nature-inspired algorithms with real-world examples.
Nature-Inspired Optimization Algorithms with Java
Author: Shashank Jain
Publisher:
ISBN: 9781484285411
Category :
Languages : en
Pages : 0
Book Description
Gain insight into the world of nature-inspired optimization techniques and algorithms. This book will prepare you to apply different nature-inspired optimization techniques to solve problems using Java. You'll start with an introduction to the hidden algorithms that nature uses and find the approximate solutions to optimization problems. You'll then see how living creatures such as fish and birds are able to perform computation to solve specific optimization tasks. This book also covers various nature-inspired algorithms by reviewing code examples for each one followed by crisp and clear explanations of the algorithm using Java code. You'll examine the use of each algorithm in specific industry scenarios such as fleet scheduling in supply chain management, and shop floor management in industrial and manufacturing applications. Nature-Inspired Optimization Algorithms with Java is your pathway to understanding a variety of optimization problems that exist in various industries and domains and it will develop an ability to apply nature-inspired algorithms to find approximate solutions to them. You will: Study optimization and its problems Examine nature-inspired algorithms such as Particle Swarm, Gray wolf, etc. See how nature-inspired algorithms are being used to solve optimization problems Use Java for solving the different nature-inspired algorithms with real-world examples.
Publisher:
ISBN: 9781484285411
Category :
Languages : en
Pages : 0
Book Description
Gain insight into the world of nature-inspired optimization techniques and algorithms. This book will prepare you to apply different nature-inspired optimization techniques to solve problems using Java. You'll start with an introduction to the hidden algorithms that nature uses and find the approximate solutions to optimization problems. You'll then see how living creatures such as fish and birds are able to perform computation to solve specific optimization tasks. This book also covers various nature-inspired algorithms by reviewing code examples for each one followed by crisp and clear explanations of the algorithm using Java code. You'll examine the use of each algorithm in specific industry scenarios such as fleet scheduling in supply chain management, and shop floor management in industrial and manufacturing applications. Nature-Inspired Optimization Algorithms with Java is your pathway to understanding a variety of optimization problems that exist in various industries and domains and it will develop an ability to apply nature-inspired algorithms to find approximate solutions to them. You will: Study optimization and its problems Examine nature-inspired algorithms such as Particle Swarm, Gray wolf, etc. See how nature-inspired algorithms are being used to solve optimization problems Use Java for solving the different nature-inspired algorithms with real-world examples.
Nature-Inspired Optimization Algorithms
Author: Aditya Khamparia
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110676117
Category : Computers
Languages : en
Pages : 168
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110676117
Category : Computers
Languages : en
Pages : 168
Book Description
This book will focus on the involvement of data mining and intelligent computing methods for recent advances in Biomedical applications and algorithms of nature-inspired computing for Biomedical systems. The proposed meta heuristic or nature-inspired techniques should be an enhanced, hybrid, adaptive or improved version of basic algorithms in terms of performance and convergence metrics. In this exciting and emerging interdisciplinary area a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging problems. Today, analysis and processing of data is one of big focuses among researchers community and information society. Due to evolution and knowledge discovery of natural computing, related meta heuristic or bio-inspired algorithms have gained increasing popularity in the recent decade because of their significant potential to tackle computationally intractable optimization dilemma in medical, engineering, military, space and industry fields. The main reason behind the success rate of nature inspired algorithms is their capability to solve problems. The nature inspired optimization techniques provide adaptive computational tools for the complex optimization problems and diversified engineering applications. Tentative Table of Contents/Topic Coverage: - Neural Computation - Evolutionary Computing Methods - Neuroscience driven AI Inspired Algorithms - Biological System based algorithms - Hybrid and Intelligent Computing Algorithms - Application of Natural Computing - Review and State of art analysis of Optimization algorithms - Molecular and Quantum computing applications - Swarm Intelligence - Population based algorithm and other optimizations
Nature-Inspired Optimization Algorithms
Author: Xin-She Yang
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Publisher: Elsevier
ISBN: 0124167454
Category : Computers
Languages : en
Pages : 277
Book Description
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
Harmony Search and Nature Inspired Optimization Algorithms
Author: Neha Yadav
Publisher: Springer
ISBN: 981130761X
Category : Technology & Engineering
Languages : en
Pages : 1209
Book Description
The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Fourth International Conference on Harmony Search, Soft Computing and Applications held at BML Munjal University, Gurgaon, India on February 7–9, 2018. It consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
Publisher: Springer
ISBN: 981130761X
Category : Technology & Engineering
Languages : en
Pages : 1209
Book Description
The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Fourth International Conference on Harmony Search, Soft Computing and Applications held at BML Munjal University, Gurgaon, India on February 7–9, 2018. It consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
Nature-Inspired Algorithms for Optimisation
Author: Raymond Chiong
Publisher: Springer Science & Business Media
ISBN: 3642002668
Category : Mathematics
Languages : en
Pages : 524
Book Description
Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficiency is measured by their ability to find acceptable results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This volume 'Nature-Inspired Algorithms for Optimisation' is a collection of the latest state-of-the-art algorithms and important studies for tackling various kinds of optimisation problems. It comprises 18 chapters, including two introductory chapters which address the fundamental issues that have made optimisation problems difficult to solve and explain the rationale for seeking inspiration from nature. The contributions stand out through their novelty and clarity of the algorithmic descriptions and analyses, and lead the way to interesting and varied new applications.
Publisher: Springer Science & Business Media
ISBN: 3642002668
Category : Mathematics
Languages : en
Pages : 524
Book Description
Nature-Inspired Algorithms have been gaining much popularity in recent years due to the fact that many real-world optimisation problems have become increasingly large, complex and dynamic. The size and complexity of the problems nowadays require the development of methods and solutions whose efficiency is measured by their ability to find acceptable results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This volume 'Nature-Inspired Algorithms for Optimisation' is a collection of the latest state-of-the-art algorithms and important studies for tackling various kinds of optimisation problems. It comprises 18 chapters, including two introductory chapters which address the fundamental issues that have made optimisation problems difficult to solve and explain the rationale for seeking inspiration from nature. The contributions stand out through their novelty and clarity of the algorithmic descriptions and analyses, and lead the way to interesting and varied new applications.
Nature Inspired Optimization Techniques for Image Processing Applications
Author: Jude Hemanth
Publisher: Springer
ISBN: 3319960024
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book provides a platform for exploring nature-inspired optimization techniques in the context of imaging applications. Optimization has become part and parcel of all computational vision applications, and since the amount of data used in these applications is vast, the need for optimization techniques has increased exponentially. These accuracy and complexity are a major area of concern when it comes to practical applications. However, these optimization techniques have not yet been fully explored in the context of imaging applications. By presenting interdisciplinary concepts, ranging from optimization to image processing, the book appeals to a broad readership, while also encouraging budding engineers to pursue and employ innovative nature-inspired techniques for image processing applications.
Publisher: Springer
ISBN: 3319960024
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book provides a platform for exploring nature-inspired optimization techniques in the context of imaging applications. Optimization has become part and parcel of all computational vision applications, and since the amount of data used in these applications is vast, the need for optimization techniques has increased exponentially. These accuracy and complexity are a major area of concern when it comes to practical applications. However, these optimization techniques have not yet been fully explored in the context of imaging applications. By presenting interdisciplinary concepts, ranging from optimization to image processing, the book appeals to a broad readership, while also encouraging budding engineers to pursue and employ innovative nature-inspired techniques for image processing applications.
Nature-Inspired Algorithms and Applied Optimization
Author: Xin-She Yang
Publisher: Springer
ISBN: 3319676695
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book reviews the state-of-the-art developments in nature-inspired algorithms and their applications in various disciplines, ranging from feature selection and engineering design optimization to scheduling and vehicle routing. It introduces each algorithm and its implementation with case studies as well as extensive literature reviews, and also includes self-contained chapters featuring theoretical analyses, such as convergence analysis and no-free-lunch theorems so as to provide insights into the current nature-inspired optimization algorithms. Topics include ant colony optimization, the bat algorithm, B-spline curve fitting, cuckoo search, feature selection, economic load dispatch, the firefly algorithm, the flower pollination algorithm, knapsack problem, octonian and quaternion representations, particle swarm optimization, scheduling, wireless networks, vehicle routing with time windows, and maximally different alternatives. This timely book serves as a practical guide and reference resource for students, researchers and professionals.
Publisher: Springer
ISBN: 3319676695
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
This book reviews the state-of-the-art developments in nature-inspired algorithms and their applications in various disciplines, ranging from feature selection and engineering design optimization to scheduling and vehicle routing. It introduces each algorithm and its implementation with case studies as well as extensive literature reviews, and also includes self-contained chapters featuring theoretical analyses, such as convergence analysis and no-free-lunch theorems so as to provide insights into the current nature-inspired optimization algorithms. Topics include ant colony optimization, the bat algorithm, B-spline curve fitting, cuckoo search, feature selection, economic load dispatch, the firefly algorithm, the flower pollination algorithm, knapsack problem, octonian and quaternion representations, particle swarm optimization, scheduling, wireless networks, vehicle routing with time windows, and maximally different alternatives. This timely book serves as a practical guide and reference resource for students, researchers and professionals.
Handbook of Research on Nature-Inspired Computing for Economics and Management
Author: Rennard, Jean-Philippe
Publisher: IGI Global
ISBN: 1591409853
Category : Business & Economics
Languages : en
Pages : 1066
Book Description
"This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.
Publisher: IGI Global
ISBN: 1591409853
Category : Business & Economics
Languages : en
Pages : 1066
Book Description
"This book provides applications of nature inspired computing for economic theory and practice, finance and stock-market, manufacturing systems, marketing, e-commerce, e-auctions, multi-agent systems and bottom-up simulations for social sciences and operations management"--Provided by publisher.
Nature-Inspired Algorithms
Author: Krishn Kumar Mishra
Publisher: CRC Press
ISBN: 1000637638
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This comprehensive reference text discusses nature inspired algorithms and their applications. It presents the methodology to write new algorithms with the help of MATLAB programs and instructions for better understanding of concepts. It covers well-known algorithms including evolutionary algorithms, genetic algorithm, particle Swarm optimization and differential evolution, and recent approached including gray wolf optimization. A separate chapter discusses test case generation using techniques such as particle swarm optimization, genetic algorithm, and differential evolution algorithm. The book- Discusses in detail various nature inspired algorithms and their applications Provides MATLAB programs for the corresponding algorithm Presents methodology to write new algorithms Examines well-known algorithms like the genetic algorithm, particle swarm optimization and differential evolution, and recent approaches like gray wolf optimization. Provides conceptual linking of algorithms with theoretical concepts The text will be useful for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. Discussing nature inspired algorithms and their applications in a single volume, this text will be useful as a reference text for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. It discusses important algorithms including deterministic algorithms, randomized algorithms, evolutionary algorithms, particle swarm optimization, big bang big crunch (BB-BC) algorithm, genetic algorithm and grey wolf optimization algorithm. "
Publisher: CRC Press
ISBN: 1000637638
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This comprehensive reference text discusses nature inspired algorithms and their applications. It presents the methodology to write new algorithms with the help of MATLAB programs and instructions for better understanding of concepts. It covers well-known algorithms including evolutionary algorithms, genetic algorithm, particle Swarm optimization and differential evolution, and recent approached including gray wolf optimization. A separate chapter discusses test case generation using techniques such as particle swarm optimization, genetic algorithm, and differential evolution algorithm. The book- Discusses in detail various nature inspired algorithms and their applications Provides MATLAB programs for the corresponding algorithm Presents methodology to write new algorithms Examines well-known algorithms like the genetic algorithm, particle swarm optimization and differential evolution, and recent approaches like gray wolf optimization. Provides conceptual linking of algorithms with theoretical concepts The text will be useful for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. Discussing nature inspired algorithms and their applications in a single volume, this text will be useful as a reference text for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. It discusses important algorithms including deterministic algorithms, randomized algorithms, evolutionary algorithms, particle swarm optimization, big bang big crunch (BB-BC) algorithm, genetic algorithm and grey wolf optimization algorithm. "
Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications
Author: Modestus O. Okwu
Publisher: Springer Nature
ISBN: 3030611116
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.
Publisher: Springer Nature
ISBN: 3030611116
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.