Natural Gas Hydrate

Natural Gas Hydrate PDF Author: M.D. Max
Publisher: Springer Science & Business Media
ISBN: 9401143870
Category : Science
Languages : en
Pages : 665

Book Description
1. THE BEGINNINGS OF HYDRATE RESEARCH Until very recently, our understanding of hydrate in the natural environment and its impact on seafloor stability, its importance as a sequester of methane, and its potential as an important mechanism in the Earth's climate change system, was masked by our lack of appreciation of the vastness of the hydrate resource. Only a few publications on naturally occurring hydrate existed prior to 1975. The first published reference to oceanic gas hydrate (Bryan and Markl, 1966) and the first publication in the scientific literature (Stoll, et a1., 1971) show how recently it has been since the topic of naturally occurring hydrate has been raised. Recently, however, the number of hydrate publications has increased substantially, reflecting increased research into hydrate topics and the initiation of funding to support the researchers. Awareness of the existence of naturally occurring gas hydrate now has spread beyond the few scientific enthusiasts who pursued knowledge about the elusive hydrate because of simple interest and lurking suspicions that hydrate would prove to be an important topic. The first national conference on gas hydrate in the U.S. was held as recently as April, 1991 at the U.S. National Center of the U.s. Geological Survey in Reston Virginia (Max et al., 1991). The meeting was co-hosted by the U.s. Geological Survey, the Naval Research Laboratory, and the U.S.

Natural Gas Hydrate in Oceanic and Permafrost Environments

Natural Gas Hydrate in Oceanic and Permafrost Environments PDF Author: M D Max
Publisher:
ISBN: 9789401143882
Category :
Languages : en
Pages : 442

Book Description


Economic Geology of Natural Gas Hydrate

Economic Geology of Natural Gas Hydrate PDF Author: Michael D. Max
Publisher: Springer Science & Business Media
ISBN: 1402039727
Category : Science
Languages : en
Pages : 362

Book Description
This book is a companion to “Natural Gas Hydrate in Oceanic and Permafrost Environments” (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as ‘hydrate’), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.

Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential

Natural Gas Hydrate - Arctic Ocean Deepwater Resource Potential PDF Author: Michael D. Max
Publisher: Springer Science & Business Media
ISBN: 3319025082
Category : Technology & Engineering
Languages : en
Pages : 114

Book Description
The book is an up-to-date basic reference for natural gas hydrate (NGH) in the Arctic Ocean. Geographical, geological, environmental, energy, new technology, and regulatory matters are discussed. The book should be of interest to general readers and scientists and students as well as industry and government agencies concerned with energy and ocean management. NGH is a solid crystalline material that compresses gas by about a factor of about 164 during crystallization from natural gas (mainly methane) - rich pore waters over time. NGH displaces water and may form large concentrations in sediment pore space. Its formation introduces changes in the geotechnical character of host sediment that allows it to be distinguished by seismic and electric exploration methods. The chemical reaction that forms NGH from gas and water molecules is highly reversible, which allows controlled conversion of the NGH to its constituent gas and water. This can be achieved rapidly by one of a number of processes including heating, depressurization, inhibitor injection, dissolution, and molecular replacement. The produced gas has the potential to make NGH a valuable unconventional natural gas resource, and perhaps the largest on earth. Estimates for NGH distribution, concentration, economic targets, and volumes in the Arctic Ocean have been carried out by restricting the economic target to deepwater turbidite sands, which are also sediment hosts for more deeply buried conventional hydrocarbon deposits. Resource base estimates are based on NGH petroleum system analysis approach using industry-standard parameters along with analogs from three relatively well known examples (Nankai-Japan, Gulf of Mexico-United States, and Arctic permafrost hydrate). Drilling data has substantiated new geotechnical-level seismic analysis techniques for estimating not just the presence of NGH but prospect volumes. In addition to a volumetric estimate for NGH having economic potential, a sedimentary depositional model is proposed to aid exploration in the five different regions around the deep central Arctic Ocean basin. Related topics are also discussed. Transport and logistics for NGH may also be applicable for stranded conventional gas and oil deposits. Arising from a discussion of new technology and methodologies that could be applied to developing NGH, suggestions are made for the lowering of exploration and capital expenses that could make NGH competitive on a produced cost basis. The basis for the extraordinarily low environmental risk for exploration and production of NGH is discussed, especially with respect to the environmentally fragile Arctic region. It is suggested that because of the low environmental risk, special regulations could be written that would provide a framework for very low cost and safe development.

Methane Gas Hydrate

Methane Gas Hydrate PDF Author: Ayhan Demirbas
Publisher: Springer Science & Business Media
ISBN: 1848828721
Category : Technology & Engineering
Languages : en
Pages : 192

Book Description
Gas hydrates represent one of the world’s largest untapped reservoirs of energy and, according to some estimates, have the potential to meet global energy needs for the next thousand years. "Methane Gas Hydrate" examines this potential by focusing on methane gas hydrate, which is increasingly considered a significant source of energy. "Methane Gas Hydrate" gives a general overview of natural gas, before delving into the subject of gas hydrates in more detail and methane gas hydrate in particular. As well as discussing methods of gas production, it also discusses the safety and environmental concerns associated with the presence of natural gas hydrates, ranging from their possible impact on the safety of conventional drilling operations to their influence on Earth’s climate. "Methane Gas Hydrate" is a useful reference on an increasingly popular energy source. It contains valuable information for chemical engineers and researchers, as well as for postgraduate students.

Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada

Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada PDF Author: S. R. Dallimore
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 428

Book Description
Natural gas hydrate, a solid form of natural gas and water, occurs in nature in association with deep permafrost and in offshore environments adjacent to continental margins. This report presents results of a gas hydrate research well project located at the north-eastern edge of the Mackenzie Delta. The project brought together researchers from North America and Japan to undertake the first investigation of a natural gas hydrate occurrence beneath permafrost that included extensive dedicated coring and associated engineering and scientific studies. The report compiles papers from the project in the following categories: an overview of the project, including drilling operations; a regional overview of gas hydrate occurrences, permafrost conditions, and geology in the project area; geology and biostratigraphy of the drilled cores; physical properties and geochemistry of the cores; characteristics of the gas hydrate, including chemical and physical analyses; downhole geophysics; and regional gas hydrate occurrences, production, and climate change considerations. Includes author index.

Exploration of Gas Hydrates

Exploration of Gas Hydrates PDF Author: Naresh Kumar Thakur
Publisher: Springer Science & Business Media
ISBN: 3642142346
Category : Science
Languages : en
Pages : 287

Book Description
Gas hydrates are ice-like crystalline substances that form a rigid cage of water molecules and entrap hydrocarbon and non-hydrocarbon gas by hydrogen bonding. Natural gas hydrate is primarily composed of water and methane. These are solid, crystalline, ice-like substances found in permafrost areas and deepwater basins around the world. They naturally occur in the pore space of marine sediments, where appropriate high pressure and low temperature conditions exist in an adequate supply of gas (mainly methane). Gas hydrates are considered as a potential non conventional energy resource. Methane hydrates are also recognized as, an influence on offshore platform stability, a major factor in climate change contributing to global warming and a significant contribution to the ocean carbon cycle. The proposed book treats various geophysical techniques in order to quantify the gas hydrate reserves and their impact on environment. The primary goal of this book is to provide the state of art for gas hydrate exploration. The target audiences for this book are non-specialist from different branches of science, graduate students and researchers.

Oceanic Methane Hydrates

Oceanic Methane Hydrates PDF Author: Lin Chen
Publisher: Gulf Professional Publishing
ISBN: 0128185651
Category : Science
Languages : en
Pages : 468

Book Description
Methane hydrates are still a complicated target for today's oil and gas offshore engineers, particularly the lack of reliable real field test data or obtaining the most recent technology available on the feasibility and challenges surrounding the extraction of methane hydrates. Oceanic Methane Hydrates delivers the solid foundation as well as today's advances and challenges that remain. Starting with the fundamental knowledge on gas hydrates, the authors define the origin, estimations, and known exploration and production methods. Historical and current oil and gas fields and roadmaps containing methane hydrates around the world are also covered to help lay the foundation for the early career engineer. Lab experiments and advancements in numerical reservoir simulations transition the engineer from research to practice with real field-core sampling techniques covered, points on how to choose producible methane hydrate reservoirs, and the importance of emerging technologies. Actual comparable onshore tests from around the world are included to help the engineer gain clarity on field expectations. Rounding out the reference are emerging technologies in all facets of the business including well completion and monitoring, economics aspects to consider, and environmental challenges, particularly methods to reduce the costs of methane hydrate exploration and production techniques. Rounding out a look at future trends, Oceanic Methane Hydrates covers both the basics and advances needed for today's engineers to gain the required knowledge needed to tackle this challenging and exciting future energy source. Understand real data and practice examples covering the newest developments of methane hydrate, from chemical, reservoir modelling and production testing Gain worldwide coverage and analysis of the most recent extraction production tests Cover the full range of emerging technologies and environmental sustainability including current regulations and policy outlook

Exploration and Production of Oceanic Natural Gas Hydrate

Exploration and Production of Oceanic Natural Gas Hydrate PDF Author: Michael D. Max
Publisher: Springer
ISBN: 3319433857
Category : Technology & Engineering
Languages : en
Pages : 424

Book Description
This book describes aspects of the natural gas hydrate (NGH) system that offer opportunities for the innovative application of existing technology and development of new technology that could dramatically lower the cost of NGH exploration and production. It is written for energy industry professsionals and those concerned with energy choices and efficiencies at a university graduate level. The NGH resource is compared with physical, environmental, and commercial aspects of other gas resources. The authors' theme is that natural gas can provide for base and peak load energy demands during the transition to and possibly within a renewable energy future. This is possibly the most useful book discussing fossil fuels that will be a reference for environmentalists and energy policy institutions, and for the environmental and energy community.

Gas Hydrates 1

Gas Hydrates 1 PDF Author: Daniel Broseta
Publisher: John Wiley & Sons
ISBN: 1119427436
Category : Science
Languages : en
Pages : 279

Book Description
Gas hydrates, or clathrate hydrates, are crystalline solids resembling ice, in which small (guest) molecules, typically gases, are trapped inside cavities formed by hydrogen-bonded water (host) molecules. They form and remain stable under low temperatures – often well below ambient conditions – and high pressures ranging from a few bar to hundreds of bar, depending on the guest molecule. Their presence is ubiquitous on Earth, in deep-marine sediments and in permafrost regions, as well as in outer space, on planets or comets. In addition to water, they can be synthesized with organic species as host molecules, resulting in milder stability conditions: these are referred to as semi-clathrate hydrates. Clathrate and semi-clathrate hydrates are being considered for applications as diverse as gas storage and separation, cold storage and transport and water treatment. This book is the first of two edited volumes, with chapters on the experimental and modeling tools used for characterizing and predicting the unique molecular, thermodynamic and kinetic properties of gas hydrates (Volume 1) and on gas hydrates in their natural environment and for potential industrial applications (Volume 2).