Author: Aroon Shenoy
Publisher: Springer Nature
ISBN: 303040045X
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
Rheology of Drag Reducing Fluids
Author: Aroon Shenoy
Publisher: Springer Nature
ISBN: 303040045X
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
Publisher: Springer Nature
ISBN: 303040045X
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
Principles of Heat Transfer in Porous Media
Author: M. Kaviany
Publisher: Springer Science & Business Media
ISBN: 1468404121
Category : Science
Languages : en
Pages : 636
Book Description
Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.
Publisher: Springer Science & Business Media
ISBN: 1468404121
Category : Science
Languages : en
Pages : 636
Book Description
Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.
Heat Transfer to Non-Newtonian Fluids
Author: Aroon Shenoy
Publisher: John Wiley & Sons
ISBN: 3527343628
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
This book has been written with the idea of providing the fundamentals for those who are interested in the field of heat transfer to non-Newtonian fluids. It is well recognized that non-Newtonian fluids are encountered in a number of transport processes and estimation of the heat transfer characteristics in the presence of these fluids requires analysis of equations that are far more complex than those encountered for Newtonian fluids. A deliberate effort has been made to demonstrate the methods of simplification of the complex equations and to put forth analytical expressions for the various heat transfer situations in as vivid a manner as possible. The book covers a broad range of topics from forced, natural and mixed convection without and with porous media. Laminar as well as turbulent flow heat transfer to non-Newtonian fluids have been treated and the criterion for transition from laminar to turbulent flow for natural convection has been established. The heat transfer characteristics of non-Newtonian fluids from inelastic power-law fluids to viscoelastic second-order fluids and mildly elastic drag reducing fluids are covered. This book can serve the needs of undergraduates, graduates and industry personnel from the fields of chemical engineering, material science and engineering, mechanical engineering and polymer engineering.
Publisher: John Wiley & Sons
ISBN: 3527343628
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
This book has been written with the idea of providing the fundamentals for those who are interested in the field of heat transfer to non-Newtonian fluids. It is well recognized that non-Newtonian fluids are encountered in a number of transport processes and estimation of the heat transfer characteristics in the presence of these fluids requires analysis of equations that are far more complex than those encountered for Newtonian fluids. A deliberate effort has been made to demonstrate the methods of simplification of the complex equations and to put forth analytical expressions for the various heat transfer situations in as vivid a manner as possible. The book covers a broad range of topics from forced, natural and mixed convection without and with porous media. Laminar as well as turbulent flow heat transfer to non-Newtonian fluids have been treated and the criterion for transition from laminar to turbulent flow for natural convection has been established. The heat transfer characteristics of non-Newtonian fluids from inelastic power-law fluids to viscoelastic second-order fluids and mildly elastic drag reducing fluids are covered. This book can serve the needs of undergraduates, graduates and industry personnel from the fields of chemical engineering, material science and engineering, mechanical engineering and polymer engineering.
Convection in Porous Media
Author: D.A. Nield
Publisher: Springer Science & Business Media
ISBN: 0387334319
Category : Technology & Engineering
Languages : en
Pages : 655
Book Description
This new edition includes nearly 1000 new references.
Publisher: Springer Science & Business Media
ISBN: 0387334319
Category : Technology & Engineering
Languages : en
Pages : 655
Book Description
This new edition includes nearly 1000 new references.
Convection in Porous Media
Author: Donald A. Nield
Publisher: Springer Science & Business Media
ISBN: 1461455413
Category : Science
Languages : en
Pages : 778
Book Description
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.
Publisher: Springer Science & Business Media
ISBN: 1461455413
Category : Science
Languages : en
Pages : 778
Book Description
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.
Nanofluid Flow in Porous Media
Author: Mohsen Sheikholeslami Kandelousi
Publisher: BoD – Books on Demand
ISBN: 1789238374
Category : Science
Languages : en
Pages : 246
Book Description
Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized.
Publisher: BoD – Books on Demand
ISBN: 1789238374
Category : Science
Languages : en
Pages : 246
Book Description
Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized.
Convection in Porous Media
Author: D.A. Nield
Publisher: Springer Science & Business Media
ISBN: 1475721757
Category : Science
Languages : en
Pages : 418
Book Description
In this book we have tried to provide a user-friendly introduction to the topic of convection in porous media. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. Only routine classical mathematics is employed. We hope that the book will be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar). This book brings into perspective the voluminous research that has been performed during the last two decades. The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment. Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches.
Publisher: Springer Science & Business Media
ISBN: 1475721757
Category : Science
Languages : en
Pages : 418
Book Description
In this book we have tried to provide a user-friendly introduction to the topic of convection in porous media. We have assumed that the reader is conversant with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained. Only routine classical mathematics is employed. We hope that the book will be useful both as a review (for reference) and as a tutorial work (suitable as a textbook in a graduate course or seminar). This book brings into perspective the voluminous research that has been performed during the last two decades. The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment. Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches.
Micropolar Fluids
Author: Grzegorz Lukaszewicz
Publisher: Springer Science & Business Media
ISBN: 1461206413
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.
Publisher: Springer Science & Business Media
ISBN: 1461206413
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.
Thermal Flows in Porous Media
Author: H.I. Ene
Publisher: Springer
ISBN: 9789401081641
Category : Science
Languages : en
Pages : 194
Book Description
The transport of heat through a porous medium in the presence of exterior forces, generally produced by the Earth's gravitational field and/or a pressure gradient, is called conduction when the Darcean fluid is static (motionless), and convection when the Darcean fluid is in motion. It is customary to use the term convection also to describe the motion which arises from the density differences due to temperature gradients within the Darcean fluid. We think that because this last phenomenon is more general it should be given a specific name; here we call it thermal flow. In the sense of the above definitions, convection and thermal flow are two distinct phenomena (they occur together, in underground combustion for instance), and the convective motion which arises when a Darcean l'luid is in contact with a source of heat is a particular case of thermal flow. Thermal flow occurs naturally and is important in many geophysical and industrial problems, particularly in oil exploration, and in the petroleum, chemical and nuclear industries (for instance, in the evaluation of capability of heat-removal from a hypothetical accident in a nuclear reactor). It can play a part in the transfer of heat from the deep interior of the Earth to a shallow depth in the geothermal regions. However, in the field of energy conversion little attention has yet been paid to the insulating characteristics of the saturated porous materials introduced in some enclosures (storage tanks) to decrease the convective and radiative transfer of heat.
Publisher: Springer
ISBN: 9789401081641
Category : Science
Languages : en
Pages : 194
Book Description
The transport of heat through a porous medium in the presence of exterior forces, generally produced by the Earth's gravitational field and/or a pressure gradient, is called conduction when the Darcean fluid is static (motionless), and convection when the Darcean fluid is in motion. It is customary to use the term convection also to describe the motion which arises from the density differences due to temperature gradients within the Darcean fluid. We think that because this last phenomenon is more general it should be given a specific name; here we call it thermal flow. In the sense of the above definitions, convection and thermal flow are two distinct phenomena (they occur together, in underground combustion for instance), and the convective motion which arises when a Darcean l'luid is in contact with a source of heat is a particular case of thermal flow. Thermal flow occurs naturally and is important in many geophysical and industrial problems, particularly in oil exploration, and in the petroleum, chemical and nuclear industries (for instance, in the evaluation of capability of heat-removal from a hypothetical accident in a nuclear reactor). It can play a part in the transfer of heat from the deep interior of the Earth to a shallow depth in the geothermal regions. However, in the field of energy conversion little attention has yet been paid to the insulating characteristics of the saturated porous materials introduced in some enclosures (storage tanks) to decrease the convective and radiative transfer of heat.
Handbook of Porous Media
Author: Kambiz Vafai
Publisher: CRC Press
ISBN: 1439885575
Category : Science
Languages : en
Pages : 946
Book Description
Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i
Publisher: CRC Press
ISBN: 1439885575
Category : Science
Languages : en
Pages : 946
Book Description
Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i