NaREC Offshore and Drivetrain Test Facility Collaboration PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download NaREC Offshore and Drivetrain Test Facility Collaboration PDF full book. Access full book title NaREC Offshore and Drivetrain Test Facility Collaboration by . Download full books in PDF and EPUB format.

NaREC Offshore and Drivetrain Test Facility Collaboration

NaREC Offshore and Drivetrain Test Facility Collaboration PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

NaREC Offshore and Drivetrain Test Facility Collaboration

NaREC Offshore and Drivetrain Test Facility Collaboration PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

Advanced Vehicles and Fuels Systems

Advanced Vehicles and Fuels Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Midwest Research Institute (MRI) and AVL Powertrain Engineering, Inc. (AVL) have executed a Software and Trademark License Agreement (Software License) by which AVL is granted the exclusive right to use, modify and improve and to commercialize by reproducing, distributing and granting sublicenses in, certain computer software known as ADVISOR 2003.

FedIMPACT-Patina Copper Nitride Project: Cooperative Research and Development Final Report, CRADA Number CRD-16-605

FedIMPACT-Patina Copper Nitride Project: Cooperative Research and Development Final Report, CRADA Number CRD-16-605 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
There are several areas of interest with regard to advancing renewable energy technology and increasing Participant's use of renewable energy. Participant would like to collectively work with the National Renewable Energy Laboratory on a variety of projects as outlined in part by the statement of work below.

Final Report for CRADA No. 97-F001

Final Report for CRADA No. 97-F001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This report documents the results of work conducted under the Cooperative Research And Development (CRADA) No. 97-F001 between the Foster Wheeler Development Corporation, FWDC, and the National Energy Technology Laboratory, NETL. Under this agreement, FWDC and NETL worked together to further investigate the applicability of the MFIX computer code to FWDC engineering problems. MFIX is a transient, finite difference, FORTRAN code that solves the equations of transport for interacting fluid and granular solid phases. It is designed to model fluidized bed reactors. Under the CRADA, work was divided into three tasks. The first task involved the continued validation of the hydrodynamic and chemistry capabilities of the MFIX code. The second task involved a parametric evaluation of the MFIX code's ability to predict bubble shape. Task 3 was to modify MFIX to make it execute faster and more easily on personal computers. Task 1 was accomplished by both FWDC and NETL while Tasks 2 and 3 were completed primarily by NETL. Non technical details of the CRADA can be found in Appendix A.

CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production].

CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production]. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 13

Book Description
Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy's (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO2, followed by the electrolysis of aqueous SO2 to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO2-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE's were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE's cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL's SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A new membrane electrode assembly (MEA) was fabricated and installed in the single cell electrolyzer (60 cm2 active cell area). Shakedown testing was conducted, and several modifications were made to the test facility equipment. Seven different MEAs were used during testing. Beginning on May 20, 2013, SRNL was able to test the SDE continuously for 1200 hours, including 1000 hours under power to generate hydrogen at an average rate of 10.8 liters per hour. The SDE was not removed or repaired during the 50-day test and was successfully restarted after each shutdown. The test was intentionally stopped after 1200 hours (1000 hours of hydrogen production) due to funding constraints. Post-test examination of the MEA using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Microanalysis (EDAX) showed no elemental sulfur deposits or sulfur layer inside the cell, thus successfully achieving the test goals. The results demonstrated that the SDE could be operated for extended periods without major performance degradation or the buildup of sulfur inside the MEA. Air Products conducted an assessment of the economic viability of the SDE based on the "as tested" design. The results indicated that the SDE faces significant economic obstacles in its current state. Further development and scale-up are necessary before the SDE is ready for commercialization.

Follow-On Cooperative Research and Development Agreement

Follow-On Cooperative Research and Development Agreement PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Book Description
This report summarizes the effort by NETL and Fluent on the Cooperative Research and Development Agreement No. 00-F039 signed in May 2000. The objective of the CRADA was to transfer technology from NETL's MFIX code into the commercial software FLUENT so as to increase the computational speed, accuracy, and utility of FLUENT. During the period of this CRADA MFIX was used to develop granular flow theories and used for simulating gas-solids chemical reactors. The FLUENT and MFIX predictions were compared with each other and with experimental data generated at NETL. The granular kinetic theory in FLUENT was improved as a result of this work, and a gas-solids reaction (ozone decomposition) was used as a test case for the gas-solids chemical reaction capability in FLUENT. Also, under a separate project, work has begun to transfer the coal combustion and gasification model in MFIX to FLUENT.

Recent Advances in Composite Materials

Recent Advances in Composite Materials PDF Author: E.E. Gdoutos
Publisher: Springer Science & Business Media
ISBN: 9401728526
Category : Technology & Engineering
Languages : en
Pages : 393

Book Description
This book contains 31 papers presented at the symposium on "Recent Advances in Composite Materials" which was organized in honor of Professor Stephanos A. Paipetis. The symposium took place at Democritus University of Thrace, in Xanthi, Greece on June 12-14, 2003. The book is a tribute to Stephanos A. Paipetis, a pioneer of composite materials, in recognition of his continuous, original diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in composite materials. It covers a wide range of subjects including experimental characterization, analytical modeling and applications of composite materials. The papers are arranged in the following six sections: General concepts, stress and failure analysis, mechanical properties, metal matrix composites, structural analysis and applications of composite materials. The first section on general concepts contains seven papers dealing with composites through the pursuit of the consilience among them, computation and mechatronic automation of multiphysics research, a theory of anisotropic scattering, wave propagation, multi-material composite wedges, a three-dimensional finite element analysis around broken fibers and an in situ assessment of the micromechanics of large scale bridging in ceramic composites.

Marine Composites

Marine Composites PDF Author: Richard Pemberton
Publisher: Woodhead Publishing
ISBN: 0081019130
Category : Technology & Engineering
Languages : en
Pages : 528

Book Description
Marine Composites: Design and Performance presents up-to-date information and recent research findings on the application and use of advanced fibre-reinforced composites in the marine environment. Following the success of their previously published title: Marine Applications of Advanced Fibre-reinforced Composites which was published in 2015; this exemplary new book provides comprehensive information on materials selection, characterization, and performance. There are also dedicated sections on sandwich structures, manufacture, advanced concepts, naval architecture and design considerations, and various applications. The book will be an essential reference resource for designers, materials engineers, manufactures, marine scientists, mechanical engineers, civil engineers, coastal engineers, boat manufacturers, offshore platform and marine renewable design engineers. Presents a unique, high-level reference on composite materials and their application and use in marine structures Provides comprehensive coverage on all aspects of marine composites, including the latest advances in damage modelling and assessment of performance Contains contributions from leading experts in the field, from both industry and academia Covers a broad range of naval, offshore and marine structures