Nanowire Field Effect Transistors: Principles and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nanowire Field Effect Transistors: Principles and Applications PDF full book. Access full book title Nanowire Field Effect Transistors: Principles and Applications by Dae Mann Kim. Download full books in PDF and EPUB format.

Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications PDF Author: Dae Mann Kim
Publisher: Springer Science & Business Media
ISBN: 1461481244
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications PDF Author: Dae Mann Kim
Publisher: Springer Science & Business Media
ISBN: 1461481244
Category : Technology & Engineering
Languages : en
Pages : 292

Book Description
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Nanowire Field-Effect Transistor (FET).

Nanowire Field-Effect Transistor (FET). PDF Author: Antonio García-Loureiro
Publisher:
ISBN: 9783039362097
Category :
Languages : en
Pages : 96

Book Description
In the last few years, the leading semiconductor industries have introduced multi-gate non-planar transistors into their core business. These are being applied in memories and in logical integrated circuits to achieve better integration on the chip, increased performance, and reduced energy consumption. Intense research is underway to develop these devices further and to address their limitations, in order to continue transistor scaling while further improving performance. This Special Issue looks at recent developments in the field of nanowire field-effect transistors (NW-FETs), covering different aspects of the technology, physics, and modelling of these nanoscale devices.

Advanced Nanoelectronics

Advanced Nanoelectronics PDF Author: Muhammad Mustafa Hussain
Publisher: John Wiley & Sons
ISBN: 352734358X
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
Brings novel insights to a vibrant research area with high application potential?covering materials, physics, architecture, and integration aspects of future generation CMOS electronics technology Over the last four decades we have seen tremendous growth in semiconductor electronics. This growth has been fueled by the matured complementary metal oxide semiconductor (CMOS) technology. This comprehensive book captures the novel device options in CMOS technology that can be realized using non-silicon semiconductors. It discusses germanium, III-V materials, carbon nanotubes and graphene as semiconducting materials for three-dimensional field-effect transistors. It also covers non-conventional materials such as nanowires and nanotubes. Additionally, nanoelectromechanical switches-based mechanical relays and wide bandgap semiconductor-based terahertz electronics are reviewed as essential add-on electronics for enhanced communication and computational capabilities. Advanced Nanoelectronics: Post-Silicon Materials and Devices begins with a discussion of the future of CMOS. It continues with comprehensive chapter coverage of: nanowire field effect transistors; two-dimensional materials for electronic applications; the challenges and breakthroughs of the integration of germanium into modern CMOS; carbon nanotube logic technology; tunnel field effect transistors; energy efficient computing with negative capacitance; spin-based devices for logic, memory and non-Boolean architectures; and terahertz properties and applications of GaN. -Puts forward novel approaches for future, state-of-the-art, nanoelectronic devices -Discusses emerging materials and architectures such as alternate channel material like germanium, gallium nitride, 1D nanowires/tubes, 2D graphene, and other dichalcogenide materials and ferroelectrics -Examines new physics such as spintronics, negative capacitance, quantum computing, and 3D-IC technology -Brings together the latest developments in the field for easy reference -Enables academic and R&D researchers in semiconductors to "think outside the box" and explore beyond silica An important resource for future generation CMOS electronics technology, Advanced Nanoelectronics: Post-Silicon Materials and Devices will appeal to materials scientists, semiconductor physicists, semiconductor industry, and electrical engineers.

Nanowires

Nanowires PDF Author: Anqi Zhang
Publisher: Springer
ISBN: 3319419811
Category : Technology & Engineering
Languages : en
Pages : 327

Book Description
This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.

Nanowire Transistors

Nanowire Transistors PDF Author: Jean-Pierre Colinge
Publisher: Cambridge University Press
ISBN: 1107052408
Category : Science
Languages : en
Pages : 269

Book Description
A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.

Junctionless Field-Effect Transistors

Junctionless Field-Effect Transistors PDF Author: Shubham Sahay
Publisher: John Wiley & Sons
ISBN: 1119523524
Category : Technology & Engineering
Languages : en
Pages : 619

Book Description
A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.

A Simulation Study of Silicon Nanowire Field Effect Transistors (FETs)

A Simulation Study of Silicon Nanowire Field Effect Transistors (FETs) PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 145

Book Description
Abstract Silicon planar MOSFETs are approaching their scaling limits. New device designs are being explored to replace the existing planar technology. Among the possible new device designs are Double Gate (DG) FETs, FinFETs, Tri-Gate FETs and Omega- Gate FETs. The Silicon Nanowire Gate All Around (GAA) FET stands out as one of the most promising FET designs due to its maximum gate effect in controlling the short channel effects. Recent developments such as synthesis of highly ordered nanowires and fabrication of nanowires as small as 1nm in diameter have illustrated the progress possible in silicon nanowire technology In this study we have explored the silicon nanowire FET as a possible candidate to replace the currently planar MOSFETs. In this thesis we investigated the silicon nanowire FET device and compared its performance with that of a double gate (DG) FET. The software used for the study assumed quantum-ballistic transport (NanoWire), which was developed at Purdue University. Initially, we presented a comparison of Nanowire FET with DG FET with for devices with same physical parameters. It was seen that superior subthreshold characteristics are exhibited by a silicon nanowire FET. We also conducted an optimization study for the 25 nm node from the ITRS report. The final device was optimized for both High Performance and Low Operating Power applications. A further study on future technology nodes down to the 14 nm node was performed which revealed short channel effects becomes significant at gate lengths ~ 5 nm even for a silicon nanowire device. Finally, a process variation study was conducted in comparison with a FinFET device. It was concluded that a silicon nanowire FET shows less sensitivity to process variation except it has higher sensitivity in variation with the diameter at less than ~4 nm than for FinFET where significant quantum effects set in. Variation with the gate length was found to be much less sensitive for the silicon nanowire FET because of its superior gate control characteristics.

Electrical Properties of Indium Arsenide Nanowires and Their Field-Effect Transistors

Electrical Properties of Indium Arsenide Nanowires and Their Field-Effect Transistors PDF Author: Mengqi Fu
Publisher: Springer
ISBN: 9789811334436
Category : Science
Languages : en
Pages : 0

Book Description
This book explores the impacts of important material parameters on the electrical properties of indium arsenide (InAs) nanowires, which offer a promising channel material for low-power electronic devices due to their small bandgap and high electron mobility. Smaller diameter nanowires are needed in order to scale down electronic devices and improve their performance. However, to date the properties of thin InAs nanowires and their sensitivity to various factors were not known. The book presents the first study of ultrathin InAs nanowires with diameters below 10 nm are studied, for the first time, establishing the channel in field-effect transistors (FETs) and the correlation between nanowire diameter and device performance. Moreover, it develops a novel method for directly correlating the atomic-level structure with the properties of individual nanowires and their device performance. Using this method, the electronic properties of InAs nanowires and the performance of the FETs they are used in are found to change with the crystal phases (wurtzite, zinc-blend or a mix phase), the axis direction and the growth method. These findings deepen our understanding of InAs nanowires and provide a potential way to tailor device performance by controlling the relevant parameters of the nanowires and devices.

Advanced Field-Effect Transistors

Advanced Field-Effect Transistors PDF Author: Dharmendra Singh Yadav
Publisher: CRC Press
ISBN: 1003816266
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.

Tunneling Field Effect Transistor Technology

Tunneling Field Effect Transistor Technology PDF Author: Lining Zhang
Publisher: Springer
ISBN: 3319316532
Category : Technology & Engineering
Languages : en
Pages : 217

Book Description
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.