Author: Teko Napporn
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries
Author: Teko Napporn
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications
Publisher: Elsevier
ISBN: 0128184973
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications
Atomically Precise Nanochemistry
Author: Rongchao Jin
Publisher: John Wiley & Sons
ISBN: 1119788641
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster. Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.
Publisher: John Wiley & Sons
ISBN: 1119788641
Category : Technology & Engineering
Languages : en
Pages : 533
Book Description
Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster. Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.
Nanostructured Multifunctional Materials
Author: Esteban A. Franceschini
Publisher: CRC Press
ISBN: 1000378950
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.
Publisher: CRC Press
ISBN: 1000378950
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
The development of nanomaterials plays a fundamental role in current and future technology applications, particularly nanomaterials that have multiple functionalities. This book provides a broad overview of the effect of nanostructuring in the multifunctionality of different widely studied nanomaterials. This book is divided into four sections constituting a road map that groups materials sharing certain types of nanostructuring, including nanoporous, nanoparticled, 2D laminar nanomaterials, and computational methods for characterizations of nanostructures. This structured approach in nanomaterials research will serve as a valuable reference material for chemists, (bio)engineers, physicists, nanotechnologists, undergraduates, and professors.
Spinel Ferrite Nanostructures for Energy Storage Devices
Author: Rajaram S. Mane
Publisher: Elsevier
ISBN: 0128192380
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Spinal Ferrite Nanostructures for Energy Storage Devices provide up-to-date coverage of ferrite properties and applications, with a particular focus on electrochemical and electrocatalytic energy storage applications. The book covers the basics of ferrites, including synthesis methods, structures and properties in the first few chapters, focusing on topics such as the properties of ferrites and the electrochemical and electro catalytic energy storage applications of unitary, binary and mixed ferrite nanostructures. Limitations for using ferrites in these devices are also covered. This book is an important reference source for materials scientists and engineers who want to gain a greater understanding of how ferrites are being used to enhance energy storage devices. - Shows how ferrites are being used in a variety of energy storage systems, including electrochemical supercapacitor systems - Discusses how ferrites are being used as an abundantly available, cheaper alternative to their materials for energy storage applications - Evaluates the challenges and limitations of using ferrites for energy storage applications
Publisher: Elsevier
ISBN: 0128192380
Category : Technology & Engineering
Languages : en
Pages : 204
Book Description
Spinal Ferrite Nanostructures for Energy Storage Devices provide up-to-date coverage of ferrite properties and applications, with a particular focus on electrochemical and electrocatalytic energy storage applications. The book covers the basics of ferrites, including synthesis methods, structures and properties in the first few chapters, focusing on topics such as the properties of ferrites and the electrochemical and electro catalytic energy storage applications of unitary, binary and mixed ferrite nanostructures. Limitations for using ferrites in these devices are also covered. This book is an important reference source for materials scientists and engineers who want to gain a greater understanding of how ferrites are being used to enhance energy storage devices. - Shows how ferrites are being used in a variety of energy storage systems, including electrochemical supercapacitor systems - Discusses how ferrites are being used as an abundantly available, cheaper alternative to their materials for energy storage applications - Evaluates the challenges and limitations of using ferrites for energy storage applications
Methods for Electrocatalysis
Author: Inamuddin
Publisher: Springer Nature
ISBN: 3030271617
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.
Publisher: Springer Nature
ISBN: 3030271617
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
This book explores key parameters, properties and fundamental concepts of electrocatalysis. It also discusses the engineering strategies, current applications in fuel-cells, water-splitting, metal-ion batteries, and fuel generation. This book elucidates entire category viewpoints together with industrial applications. Therefore, all the sections of this book emphasize the recent advances of different types of electrocatalysts, current challenges, and state-of-the-art studies through detailed reviews. This book is the result of commitments by numerous experts in the field from various backgrounds and expertise and appeals to industrialists, researchers, scientists and in addition understudies from various teaches.
Nano-electrocatalyst for Oxygen Reduction Reaction
Author: Omar Solorza Feria
Publisher: CRC Press
ISBN: 1040043496
Category : Science
Languages : en
Pages : 350
Book Description
Global warming switches our reliance from fossil fuels to green, sustainable renewable energy sources. Because of its promising nature, high-efficiency nano-electrocatalysts have sparked interest in renewable energy. Hydrogen fuel cell/polymer electrolyte membrane (PEM) vehicles are the most environmentally conscious electromobility vehicles, with a high energy density and quick refuelling technology, prompting the auto industry to launch a variety of PEM fuel cell vehicles around the world. Oxygen reduction reaction (ORR) primary research interests include fuel cells and metal-air batteries. The sluggish kinetic reaction of ORR, which is responsible for the rate-limiting reaction at the PEM fuel cell cathodic system, further decreases energy efficiency. Optimising ORR for market expansion with cost-effective and efficient nano-electrocatalysts, on the other hand, remains a challenge. The book covers fundamental ORR reaction kinetics theories, tools, and techniques. It also explains the nano electrocatalysts for ORR made of noble, non-noble, and nanocarbon materials. Finally, the book explores the applications of PEM fuel cells and metal-air batteries.
Publisher: CRC Press
ISBN: 1040043496
Category : Science
Languages : en
Pages : 350
Book Description
Global warming switches our reliance from fossil fuels to green, sustainable renewable energy sources. Because of its promising nature, high-efficiency nano-electrocatalysts have sparked interest in renewable energy. Hydrogen fuel cell/polymer electrolyte membrane (PEM) vehicles are the most environmentally conscious electromobility vehicles, with a high energy density and quick refuelling technology, prompting the auto industry to launch a variety of PEM fuel cell vehicles around the world. Oxygen reduction reaction (ORR) primary research interests include fuel cells and metal-air batteries. The sluggish kinetic reaction of ORR, which is responsible for the rate-limiting reaction at the PEM fuel cell cathodic system, further decreases energy efficiency. Optimising ORR for market expansion with cost-effective and efficient nano-electrocatalysts, on the other hand, remains a challenge. The book covers fundamental ORR reaction kinetics theories, tools, and techniques. It also explains the nano electrocatalysts for ORR made of noble, non-noble, and nanocarbon materials. Finally, the book explores the applications of PEM fuel cells and metal-air batteries.
Atomically Precise Electrocatalysts for Electrochemical Energy Applications
Author: Anuj Kumar
Publisher: Springer Nature
ISBN: 3031546229
Category :
Languages : en
Pages : 446
Book Description
Publisher: Springer Nature
ISBN: 3031546229
Category :
Languages : en
Pages : 446
Book Description
Electrocatalytic Materials
Author: Santanu Patra
Publisher: Springer Nature
ISBN: 3031659023
Category :
Languages : en
Pages : 631
Book Description
Publisher: Springer Nature
ISBN: 3031659023
Category :
Languages : en
Pages : 631
Book Description
Polymer-Engineered Nanostructures for Advanced Energy Applications
Author: Zhiqun Lin
Publisher: Springer
ISBN: 331957003X
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.
Publisher: Springer
ISBN: 331957003X
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.
Plasmonic Catalysis
Author: Pedro H.C. Camargo
Publisher: John Wiley & Sons
ISBN: 3527826963
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Explore this comprehensive discussion of the foundational and advanced topics in plasmonic catalysis from two leaders in the field Plasmonic Catalysis: From Fundamentals to Applications delivers a thorough treatment of plasmonic catalysis, from its theoretical foundations to myriad applications in industry and academia. In addition to the fundamentals, the book covers the theory, properties, synthesis, and various reaction types of plasmonic catalysis. It also covers its applications in reactions including oxidation, reduction, nitrogen fixation, CO2 reduction, and more. The book characterizes plasmonic catalytic systems and describes their properties, tackling the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. It also describes the fundamentals of controlled synthesis of metal nanoparticles relevant to plasmonic catalysis, as well as practical examples thereof. Plasmonic Catalysis covers a wide variety of other practical topics in the field, including hydrogenation reactions and the harvesting of LSPR-excited charge carriers. Readers will also benefit from the inclusion of: A thorough introduction to plasmonic catalysis, a theory of plasmons for catalysis and mechanisms, as well as optical properties of plasmonic-catalytic nanostructures An exploration of the synthesis of plasmonic nanoparticles for photo and electro catalysis, as well as plasmonic catalysis towards oxidation reactions and hydrogenation reactions Discussions of plasmonic catalysis for multi-electron processes and artificial photosynthesis and N2 fixation An examination of control over reaction selectivity in plasmonic catalysis Perfect for catalytic chemists, materials scientists, photochemists, and physical chemists, Plasmonic Catalysis: From Fundamentals to Applications will also earn a place in the libraries of physicists who seek a one-stop resource to enhance their understanding of applications in plasmonic catalysis.
Publisher: John Wiley & Sons
ISBN: 3527826963
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
Explore this comprehensive discussion of the foundational and advanced topics in plasmonic catalysis from two leaders in the field Plasmonic Catalysis: From Fundamentals to Applications delivers a thorough treatment of plasmonic catalysis, from its theoretical foundations to myriad applications in industry and academia. In addition to the fundamentals, the book covers the theory, properties, synthesis, and various reaction types of plasmonic catalysis. It also covers its applications in reactions including oxidation, reduction, nitrogen fixation, CO2 reduction, and more. The book characterizes plasmonic catalytic systems and describes their properties, tackling the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. It also describes the fundamentals of controlled synthesis of metal nanoparticles relevant to plasmonic catalysis, as well as practical examples thereof. Plasmonic Catalysis covers a wide variety of other practical topics in the field, including hydrogenation reactions and the harvesting of LSPR-excited charge carriers. Readers will also benefit from the inclusion of: A thorough introduction to plasmonic catalysis, a theory of plasmons for catalysis and mechanisms, as well as optical properties of plasmonic-catalytic nanostructures An exploration of the synthesis of plasmonic nanoparticles for photo and electro catalysis, as well as plasmonic catalysis towards oxidation reactions and hydrogenation reactions Discussions of plasmonic catalysis for multi-electron processes and artificial photosynthesis and N2 fixation An examination of control over reaction selectivity in plasmonic catalysis Perfect for catalytic chemists, materials scientists, photochemists, and physical chemists, Plasmonic Catalysis: From Fundamentals to Applications will also earn a place in the libraries of physicists who seek a one-stop resource to enhance their understanding of applications in plasmonic catalysis.