Nanoscale structure and assembly at solid-fluid interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nanoscale structure and assembly at solid-fluid interfaces PDF full book. Access full book title Nanoscale structure and assembly at solid-fluid interfaces by Xiang Yang Liu. Download full books in PDF and EPUB format.

Nanoscale structure and assembly at solid-fluid interfaces

Nanoscale structure and assembly at solid-fluid interfaces PDF Author: Xiang Yang Liu
Publisher: Springer Science & Business Media
ISBN: 9781402077920
Category : Science
Languages : en
Pages : 310

Book Description


Nanoscale structure and assembly at solid-fluid interfaces

Nanoscale structure and assembly at solid-fluid interfaces PDF Author: Xiang Yang Liu
Publisher: Springer Science & Business Media
ISBN: 9781402077920
Category : Science
Languages : en
Pages : 310

Book Description


Nanoscale Structure and Assembly at Solid-Fluid Interfaces

Nanoscale Structure and Assembly at Solid-Fluid Interfaces PDF Author: James J. De Yoreo
Publisher: Springer
ISBN: 9781441990464
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
The aim of this reference is to take us to the root of these issues: the solid-fluid interfacial structures and the basic interactions between structural units that determine the kinetics of nano particles and assembly formation, and subsequently the resulting structures and functionalities of the nano phases and devices. By taking a fresh look at the novel nano structure engineering and surface probing technologies from a global viewpoint of fundamental principles, the two volumes of this book direct our focus from the macroscopic phase to the nano structures ranging from inorganic to bio nano materials. Featuring contributions from a number of international experts in the related fields, this book offers a comprehensive and synergistic look into these challenging issues in terms of theoretical modeling, computer simulations, advanced surface probing and fabrication and interface characterizations. The book also provides a link to the nanostructure engineering of some novel materials playing an important role in advancing technologies in this field.

Nanoscale Structure and Assembly at Solid-fluid Interfaces

Nanoscale Structure and Assembly at Solid-fluid Interfaces PDF Author: Xiang Yang Liu
Publisher:
ISBN: 9781402077937
Category : Nanostructures
Languages : en
Pages : 285

Book Description


Nanoscale structure and assembly at solid-fluid interfaces

Nanoscale structure and assembly at solid-fluid interfaces PDF Author: Xiang Yang Liu
Publisher: Springer Science & Business Media
ISBN: 9781402078057
Category : Science
Languages : en
Pages : 336

Book Description
All of us have read about the vast potential inherent in nanotechnology and the exciting impact it has had in changing our lifestyle in the 21st century. One of the basic issues confronting us is how to fabricate devices or materials on the nano scale. What is the basic physics governing the formation of nano phases? How can biological systems inspire us to formulate nano scale architectures, in the way nature has always done and continues to do? These are two main areas of focus in this book. The aim of this reference is to take us to the root of these issues: the solid-fluid interfacial structures and the basic interactions between structural units that determine the kinetics of nano particles and assembly formation, and subsequently the resulting structures and functionalities of the nano phases and devices. By taking a fresh look at the novel nano structure engineering and surface probing technologies from a global viewpoint of fundamental principles, the two volumes of this book direct our focus from the macroscopic phase to the nano structures ranging from inorganic to bio nano materials. Featuring contributions from a number of international experts in the related fields, this book offers a comprehensive and synergistic look into these challenging issues in terms of theoretical modeling, computer simulations, advanced surface probing and fabrication and interface characterizations. The book also provides a link to the nanostructure engineering of some novel materials playing an important role in advancing technologies in this field.

Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale

Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale PDF Author: Patricia Maurice
Publisher: John Wiley & Sons
ISBN: 0470400366
Category : Science
Languages : en
Pages : 469

Book Description
An advanced exploration ofwater-rock interactions Based on the author's fifteen years of teaching and tried-and-tested experiences in the classroom, here is a comprehensive exploration of water-rock interactions. Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale covers aspects ranging from the theory of charged particle surfaces to how minerals grow and dissolve to new frontiers in W-R interactions such as nanoparticles, geomicrobiology, and climate change. Providing basic conceptual understanding along with more complex subject matter, Professor Patricia Maurice encourages students to look beyond the text to ongoing research in the field. Designed to engage the learner, the book features: Numerous case studies to contextualize concepts Practice and thought questions at the end of each chapter Broad coverage from basic theory to cutting-edge topics such as nanotechnology Both basic and applied science This text goes beyond W-R interactions to touch on a broad range of environmental disciplines. While written for advanced undergraduate and graduate students primarily in geochemistry and soil chemistry, Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale will serve the needs of such diverse fields as environmental engineering, hydrogeology, physics, biology, and environmental chemistry.

Introduction to Nanoscale Science and Technology

Introduction to Nanoscale Science and Technology PDF Author: Massimiliano Ventra
Publisher: Springer Science & Business Media
ISBN: 1402077572
Category : Technology & Engineering
Languages : en
Pages : 608

Book Description
From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the section on nanolithography most, as it includes many interesting details from industrial manufacturing processes. The chapter on self-assembly also provides an excellent overview by introducing six types of intermolecular interactions and the ways these can be employed to fabricate nanostructures. The second section covers nanomaterials and nanostructures. Out of its 110 pages, 45 are devoted to carbon nanotubes. Fullerenes and quantum dots each have their own chapter that focuses on the properties and applications of these nanostructures. Nanolayer, nanowire, and nanoparticle composites of metals and semiconductors are briefly covered (just 12 pages), with slightly more discussion of specific applications. The section on nanoscale electronics begins with a history of microelectronics before discussing the difficulties in shrinking transistor size further. The discussion of problems (leakage current, hot electrons, doping fluctuations, etc.) and possible solutions (high- k dielectrics, double-gate devices) could easily motivate deeper discussions of nanoscale electrical transport. A chapter on molecular electronics considers transport through alkanes, molecular transistors, and DNA in a simple, qualitative manner we found highly instructive. Nanoscale magnetic systems are examined in the fourth section. The concept of quantum computation is nicely presented, although the discussion of how this can be achieved with controlled spin states is (perhaps necessarily) not clear. We found the chapter on magnetic storage to be one of the most lucid in the book. The giant magnetoresistive effect, operation of spin valves, and issues in magnetic scaling are easier to understand when placed in the context of the modern magnetic hard disk drive. Micro- and nanoelectromechanical systems are covered with an emphasis on the integration of sensing, computation, and communication. Here, the student can see advanced applications of lithography. The sixth section, nanoscale optoelectronics, describes quantum dots, organic optoelectronics, and photonic crystals. The chapter on organic optoelectronics is especially clear in its discussion of the fundamentals of this complicated field. The book concludes with an overview of nanobiotechnology that covers biomimetics, biomolecular motors, and nanofluidics. Because so many authors have contributed to this textbook, it suffers a bit from repetition. However, this also allows sections to be omitted without any adverse effect on student comprehension. We would have liked to see more technology to balance the science; apart from the chapters on lithography and magnetic storage, little more than an acknowledgment is given to commercial applications. Overall, this book serves as an excellent starting point for the study of nanoscale science and technology, and we recommend it to anyone with a modest scientific background. It is also a great vehicle to motivate the study of science at a time when interest is waning. Nanotechnology educators should look no further." (MATERIALS TODAY, June 2005)

Kinetics of Water-Rock Interaction

Kinetics of Water-Rock Interaction PDF Author: Susan Brantley
Publisher: Springer Science & Business Media
ISBN: 0387735631
Category : Science
Languages : en
Pages : 843

Book Description
Geochemical kinetics as a topic is now of importance to a wide range of geochemists in academia, industry, and government, and all geochemists need a rudimentary knowledge of the field. This book summarizes the fundamentals of geochemical kinetics with examples drawn especially from mineral dissolution and precipitation. It also encompasses discussion of high temperature processes and global geochemical cycle modeling. Analysis of textures of rocks, sediments, and mineral surfaces are incorporated throughout and provide a sub-theme of the book.

The Effect of Nanoscale Structure on Interfacial Energy

The Effect of Nanoscale Structure on Interfacial Energy PDF Author: Jeffrey James Kuna
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Book Description
Interfaces are ubiquitous in nature. From solidification fronts to the surfaces of biological cells, interfacial properties determine the interactions between a solid and a liquid. Interfaces, specifically liquid-solid interfaces, play important roles in many fields of science. In the field of biology, interfaces are fundamental in determining cell-cell interactions, protein folding behavior and assembly, and ligand binding. In chemistry, heterogeneous catalysts greatly increase reaction rates of reactions occurring at the interface. In materials science, crystallization and the resulting crystal habit are determined by interfacial properties, and interfaces affect diffusion through polycrystalline materials. In nanotechnology, much work on self-assembly, molecular recognition, catalysis, electrochemistry and numerous other applications depends on the properties of interfaces. The structure and properties of interfaces have been studied experimentally using a variety of techniques including various forms of microscopy, wetting measurements, and scattering techniques. Conventionally, the typical interface considered was highly homogeneous and exhibited a uniform composition and roughness. In contrast, many of the interfaces encountered in biological or nanotechnological systems have surfaces with a greater degree of complexity. While the surface may be compositionally homogeneous over a large area, these surfaces are structured and have a complex surface topology. On a mixed interface, several different chemical groups may be present on the surface, and the chemical composition can vary on a sub-nanometer length scale. Structured systems are inherently difficult to experimentally measure. Most techniques available to characterize interfaces average properties over the entire surface and are not sensitive to nanoscale variations. Furthermore, many of these techniques are incapable of distinguishing global, surface-dependent properties from artifactual influences. Many surface characterization techniques require a large, flat, smooth surface. Preparation of mixed interfaces is an experimental challenge as well as many mixed interfaces with nanoscale structure are present on objects that are themselves nanoscale, such as proteins. Several technological hurdles exist that limit the ability to produce nanoscale mixed interfaces large enough for conventional measurements. In this thesis, the effect of surface structure on wetting behavior was investigated. Interfaces can be characterized by the energy required to form them, a quantity called interfacial energy. Models have been developed to describe the interfacial energy of mixed interfaces for a wide range of surfaces. These models only account for the composition of the surface. The wetting behavior of mixed surfaces has also been related to artifact-dependent wetting effects (namely the effect of a boundary or asperity). No attempt has been made to incorporate surface structure into a global expression of interfacial energy. This thesis will study how the structure of an interface determines the resulting interfacial energy. Surfaces prepared with chemical domains of different length scales demonstrate and interfacial energy trend with significant deviation from the current best model. Specifically, the observed trend is non-linear, unlike the conventional model, and furthermore in some cases, is non-monotonic. These deviations are shown to stem from the surfaces' intrinsic structure and are not an artifact of the measurement process or surface defects. The deviations from the predicted trend are explained by the molecular scale structure of the solvent. The two proposed mechanisms, cavitation and confinement, arise when surface features are smaller than a solvent-dependent length. With cavitation, nonwetting surface features below a size threshold are more wetting than would be expected. With confinement, wetting patches become less wetting as their dimensions are decreased. Molecular dynamics simulations support the proposed mechanisms. Additional experimental results provide further experimental evidence of the proposed molecular-scale wetting phenomena.

Research Methods in Biomineralization Science

Research Methods in Biomineralization Science PDF Author:
Publisher: Elsevier
ISBN: 0124166555
Category : Science
Languages : en
Pages : 703

Book Description
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in biomineralization science, and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers research methods in biomineralization science Contains sections on such topics as and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure

Nanoscale Liquid Interfaces

Nanoscale Liquid Interfaces PDF Author: Thierry Ondarcuhu
Publisher: CRC Press
ISBN: 9814364487
Category : Science
Languages : en
Pages : 769

Book Description
This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid env